These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 37647744)
1. Enhanced thrombolytic effect induced by acoustic cavitation generated from nitrogen-doped annealed nanodiamond particles. Zhang Q; Xue H; Zhang H; Chen Y; Liu Z; Fan Z; Guo X; Wu X; Zhang D; Tu J Ultrason Sonochem; 2023 Oct; 99():106563. PubMed ID: 37647744 [TBL] [Abstract][Full Text] [Related]
2. 2D spatiotemporal passive cavitation imaging and evaluation during ultrasound thrombolysis based on diagnostic ultrasound platform. Zhang Q; Zhu Y; Zhang G; Xue H; Ding B; Tu J; Zhang D; Guo X Ultrason Sonochem; 2024 Nov; 110():107051. PubMed ID: 39232288 [TBL] [Abstract][Full Text] [Related]
3. Improved assessment sensitivity of time-varying cavitation events based on wavelet analysis. Zhang Q; Zhang G; Luo L; Liu Z; Zhu Y; Fan Z; Guo X; Wu X; Zhang D; Tu J Ultrasonics; 2024 Mar; 138():107227. PubMed ID: 38118237 [TBL] [Abstract][Full Text] [Related]
4. Effect of acoustic parameters on the cavitation behavior of SonoVue microbubbles induced by pulsed ultrasound. Lin Y; Lin L; Cheng M; Jin L; Du L; Han T; Xu L; Yu ACH; Qin P Ultrason Sonochem; 2017 Mar; 35(Pt A):176-184. PubMed ID: 27707644 [TBL] [Abstract][Full Text] [Related]
6. Effects of ultrasound-induced inertial cavitation on enzymatic thrombolysis. Chuang YH; Cheng PW; Chen SC; Ruan JL; Li PC Ultrason Imaging; 2010 Apr; 32(2):81-90. PubMed ID: 20687276 [TBL] [Abstract][Full Text] [Related]
7. Effects of ultrasound pulse parameters on cavitation properties of flowing microbubbles under physiologically relevant conditions. Cheng M; Li F; Han T; Yu ACH; Qin P Ultrason Sonochem; 2019 Apr; 52():512-521. PubMed ID: 30642801 [TBL] [Abstract][Full Text] [Related]
8. Ultrasound-enhanced thrombolysis using Definity as a cavitation nucleation agent. Datta S; Coussios CC; Ammi AY; Mast TD; de Courten-Myers GM; Holland CK Ultrasound Med Biol; 2008 Sep; 34(9):1421-33. PubMed ID: 18378380 [TBL] [Abstract][Full Text] [Related]
9. Investigation on the inertial cavitation threshold and shell properties of commercialized ultrasound contrast agent microbubbles. Guo X; Li Q; Zhang Z; Zhang D; Tu J J Acoust Soc Am; 2013 Aug; 134(2):1622-31. PubMed ID: 23927202 [TBL] [Abstract][Full Text] [Related]
10. Ultrafast 2-dimensional image monitoring and array-based passive cavitation detection for ultrasound contrast agent destruction in a variably sized region. Xu S; Hu H; Jiang H; Xu Z; Wan M J Ultrasound Med; 2014 Nov; 33(11):1957-70. PubMed ID: 25336483 [TBL] [Abstract][Full Text] [Related]
11. Classification and prediction of inertial cavitation activity induced by pulsed high-intensity focused ultrasound. Xu H; He L; Zhong B; Qiu J; Tu J Ultrason Sonochem; 2019 Sep; 56():77-83. PubMed ID: 31101291 [TBL] [Abstract][Full Text] [Related]
12. Transfection effect of microbubbles on cells in superposed ultrasound waves and behavior of cavitation bubble. Kodama T; Tomita Y; Koshiyama K; Blomley MJ Ultrasound Med Biol; 2006 Jun; 32(6):905-14. PubMed ID: 16785012 [TBL] [Abstract][Full Text] [Related]
13. Dependence of pulsed focused ultrasound induced thrombolysis on duty cycle and cavitation bubble size distribution. Xu S; Zong Y; Feng Y; Liu R; Liu X; Hu Y; Han S; Wan M Ultrason Sonochem; 2015 Jan; 22():160-6. PubMed ID: 25043556 [TBL] [Abstract][Full Text] [Related]
14. Harmonic responses and cavitation activity of encapsulated microbubbles coupled with magnetic nanoparticles. Gu Y; Chen C; Tu J; Guo X; Wu H; Zhang D Ultrason Sonochem; 2016 Mar; 29():309-16. PubMed ID: 26585011 [TBL] [Abstract][Full Text] [Related]
15. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method. Xu S; Zong Y; Li W; Zhang S; Wan M Ultrason Sonochem; 2014 May; 21(3):975-83. PubMed ID: 24360840 [TBL] [Abstract][Full Text] [Related]
16. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies. Arvanitis CD; McDannold N Med Phys; 2013 Nov; 40(11):112901. PubMed ID: 24320468 [TBL] [Abstract][Full Text] [Related]
17. Application of cavitation promoting surfaces in management of acute ischemic stroke. Soltani A Ultrasonics; 2013 Feb; 53(2):580-7. PubMed ID: 23141666 [TBL] [Abstract][Full Text] [Related]
18. Relationship between cavitation and loss of echogenicity from ultrasound contrast agents. Radhakrishnan K; Bader KB; Haworth KJ; Kopechek JA; Raymond JL; Huang SL; McPherson DD; Holland CK Phys Med Biol; 2013 Sep; 58(18):6541-63. PubMed ID: 24002637 [TBL] [Abstract][Full Text] [Related]
19. Inertial cavitation produced by pulsed ultrasound in controlled host media. Deng CX; Xu Q; Apfel RE; Holland CK J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):1199-208. PubMed ID: 8759969 [TBL] [Abstract][Full Text] [Related]
20. Acoustic Measurements of Nucleus Size Distribution at the Cavitation Threshold. Mancia L; Rodriguez M; Sukovich JR; Haskel S; Xu Z; Johnsen E Ultrasound Med Biol; 2021 Apr; 47(4):1024-1031. PubMed ID: 33422304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]