These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37647902)

  • 41. Biomimetic porous silk fibroin/biphasic calcium phosphate scaffold for bone tissue regeneration.
    Liu B; Gao X; Sun Z; Fang Q; Geng X; Zhang H; Wang G; Dou Y; Hu P; Zhu K; Wang D; Xing J; Liu D; Zhang M; Li R
    J Mater Sci Mater Med; 2018 Dec; 30(1):4. PubMed ID: 30569403
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Silk fibroin coated TiO
    Saha S; Pramanik K; Biswas A
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():109982. PubMed ID: 31546427
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tissue scaffolds mimicking hierarchical bone morphology as biomaterials for oral maxillofacial surgery with augmentation: structure, properties, and performance evaluation for
    Thonglam J; Nuntanaranont T; Kong X; Meesane J
    Biomed Mater; 2024 Aug; 19(5):. PubMed ID: 39094618
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrospun Silk Fibroin Nanofibrous Scaffolds with Two-Stage Hydroxyapatite Functionalization for Enhancing the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells.
    Ko E; Lee JS; Kim H; Yang SY; Yang D; Yang K; Lee J; Shin J; Yang HS; Ryu W; Cho SW
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7614-7625. PubMed ID: 28475306
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preparation and in vitro characterization of biomorphic silk fibroin scaffolds for bone tissue engineering.
    Qian J; Suo A; Jin X; Xu W; Xu M
    J Biomed Mater Res A; 2014 Sep; 102(9):2961-71. PubMed ID: 24123779
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Silk-Hydroxyapatite Nanoscale Scaffolds with Programmable Growth Factor Delivery for Bone Repair.
    Ding Z; Fan Z; Huang X; Lu Q; Xu W; Kaplan DL
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24463-70. PubMed ID: 27579921
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantitative analyses of the effect of silk fibroin/nano-hydroxyapatite composites on osteogenic differentiation of MG-63 human osteosarcoma cells.
    Lin L; Hao R; Xiong W; Zhong J
    J Biosci Bioeng; 2015 May; 119(5):591-5. PubMed ID: 25454062
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.
    Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication and characterization of strontium-hydroxyapatite/silk fibroin biocomposite nanospheres for bone-tissue engineering applications.
    Wang L; Pathak JL; Liang D; Zhong N; Guan H; Wan M; Miao G; Li Z; Ge L
    Int J Biol Macromol; 2020 Jan; 142():366-375. PubMed ID: 31593715
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biomineralized poly (l-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering.
    Gao Y; Shao W; Qian W; He J; Zhou Y; Qi K; Wang L; Cui S; Wang R
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():195-207. PubMed ID: 29519429
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fabrication of highly interconnected porous silk fibroin scaffolds for potential use as vascular grafts.
    Zhu M; Wang K; Mei J; Li C; Zhang J; Zheng W; An D; Xiao N; Zhao Q; Kong D; Wang L
    Acta Biomater; 2014 May; 10(5):2014-23. PubMed ID: 24486642
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication and Characterization of Silk Fibroin-Based Nanofibrous Scaffolds Supplemented with Gelatin for Corneal Tissue Engineering.
    Sahi AK; Varshney N; Poddar S; Gundu S; Mahto SK
    Cells Tissues Organs; 2021; 210(3):173-194. PubMed ID: 34252899
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Insights into nanomechanical behavior of B. mori silk fibroin-hydroxyapatite bio-nanocomposite using MD simulations: Role of varying hydroxyapatite content.
    Patel M; Singh SP; Dubey DK
    J Mech Behav Biomed Mater; 2023 Nov; 147():106125. PubMed ID: 37797553
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chopped fibers and nano-hydroxyapatite enhanced silk fibroin porous hybrid scaffolds for bone augmentation.
    Jin S; Fu X; Zeng W; Chen A; Luo Z; Li Y; Zhou Z; Li J
    J Mater Chem B; 2023 Feb; 11(7):1557-1567. PubMed ID: 36692356
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Naringin-inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord-derived mesenchymal stem cell-based bone regeneration.
    Zhao ZH; Ma XL; Zhao B; Tian P; Ma JX; Kang JY; Zhang Y; Guo Y; Sun L
    Cell Prolif; 2021 Jul; 54(7):e13043. PubMed ID: 34008897
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transplantation of human placenta-derived mesenchymal stem cells in a silk fibroin/hydroxyapatite scaffold improves bone repair in rabbits.
    Jin J; Wang J; Huang J; Huang F; Fu J; Yang X; Miao Z
    J Biosci Bioeng; 2014 Nov; 118(5):593-8. PubMed ID: 24894683
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydroxyapatite reinforced inherent RGD containing silk fibroin composite scaffolds: Promising platform for bone tissue engineering.
    Behera S; Naskar D; Sapru S; Bhattacharjee P; Dey T; Ghosh AK; Mandal M; Kundu SC
    Nanomedicine; 2017 Jul; 13(5):1745-1759. PubMed ID: 28285159
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior.
    Bidgoli MR; Alemzadeh I; Tamjid E; Khafaji M; Vossoughi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109688. PubMed ID: 31349405
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities.
    Sangkert S; Meesane J; Kamonmattayakul S; Chai WL
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1138-49. PubMed ID: 26478414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.