These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 37648253)
21. Comprehensive analysis of differences in N6-methyladenosine RNA methylomes in Li H; Lin J; Cheng S; Chi J; Luo J; Tang Y; Zhao W; Shu Y; Liu X; Xu C Front Cell Dev Biol; 2023; 11():1136096. PubMed ID: 37363723 [No Abstract] [Full Text] [Related]
22. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Chen M; Wei L; Law CT; Tsang FH; Shen J; Cheng CL; Tsang LH; Ho DW; Chiu DK; Lee JM; Wong CC; Ng IO; Wong CM Hepatology; 2018 Jun; 67(6):2254-2270. PubMed ID: 29171881 [TBL] [Abstract][Full Text] [Related]
23. Analysis of N6-Methyladenosine Methylation Modification in Fructose-Induced Non-Alcoholic Fatty Liver Disease. Luo Y; Zhang Z; Xiang L; Zhou B; Wang X; Lin Y; Ding X; Liu F; Lu Y; Peng Y Front Endocrinol (Lausanne); 2021; 12():780617. PubMed ID: 34950107 [TBL] [Abstract][Full Text] [Related]
24. Methylation recognition protein YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) regulates the proliferation, migration and invasion of osteosarcoma by regulating m6A level of CCR4-NOT transcription complex subunit 7 (CNOT7). Wei K; Gao Y; Wang B; Qu YX Bioengineered; 2022 Mar; 13(3):5236-5250. PubMed ID: 35156522 [TBL] [Abstract][Full Text] [Related]
25. Abnormality of m6A mRNA Methylation Is Involved in Alzheimer's Disease. Han M; Liu Z; Xu Y; Liu X; Wang D; Li F; Wang Y; Bi J Front Neurosci; 2020; 14():98. PubMed ID: 32184705 [TBL] [Abstract][Full Text] [Related]
26. Chinese Ecliptae herba (Eclipta prostrata (L.) L.) extract and its component wedelolactone enhances osteoblastogenesis of bone marrow mesenchymal stem cells via targeting METTL3-mediated m6A RNA methylation. Tian S; Li YL; Wang J; Dong RC; Wei J; Ma Y; Liu YQ J Ethnopharmacol; 2023 Aug; 312():116433. PubMed ID: 37004744 [TBL] [Abstract][Full Text] [Related]
27. Integrated analysis of the transcriptome-wide m6A methylome in preeclampsia and healthy control placentas. Wang J; Gao F; Zhao X; Cai Y; Jin H PeerJ; 2020; 8():e9880. PubMed ID: 32983644 [TBL] [Abstract][Full Text] [Related]
28. The m6A methylation profiles of immune cells in type 1 diabetes mellitus. Wang Y; Xu L; Luo S; Sun X; Li J; Pang H; Zhou J; Zhou Y; Shi X; Li X; Huang G; Xie Z; Zhou Z Front Immunol; 2022; 13():1030728. PubMed ID: 36457997 [TBL] [Abstract][Full Text] [Related]
29. The crosstalk between m Zhao Y; Chen Y; Jin M; Wang J Theranostics; 2021; 11(9):4549-4566. PubMed ID: 33754077 [TBL] [Abstract][Full Text] [Related]
30. Involvement of N6-methyladenosine modifications of long noncoding RNAs in systemic lupus erythematosus. Wu J; Deng LJ; Xia YR; Leng RX; Fan YG; Pan HF; Ye DQ Mol Immunol; 2022 Mar; 143():77-84. PubMed ID: 35051888 [TBL] [Abstract][Full Text] [Related]
32. m6A-related bioinformatics analysis and functional characterization reveals that METTL3-mediated NPC1L1 mRNA hypermethylation facilitates progression of atherosclerosis via inactivation of the MAPK pathway. Zhang G; Li X; Huang X Inflamm Res; 2023 Mar; 72(3):429-442. PubMed ID: 36583755 [TBL] [Abstract][Full Text] [Related]
33. N6-methyladenosine-methylomic landscape of lung tissues of mice with chronic obstructive pulmonary disease. Hu T; Xu L; Jiang M; Zhang F; Li Q; Li Z; Wu C; Ding J; Li F; Wang J Front Immunol; 2023; 14():1137195. PubMed ID: 37056763 [TBL] [Abstract][Full Text] [Related]
34. Mechanism of RNA modification N6-methyladenosine in human cancer. Zhou Z; Lv J; Yu H; Han J; Yang X; Feng D; Wu Q; Yuan B; Lu Q; Yang H Mol Cancer; 2020 Jun; 19(1):104. PubMed ID: 32513173 [TBL] [Abstract][Full Text] [Related]
35. Unique features of the m Zhang G; Lv Z; Diao S; Liu H; Duan A; He C; Zhang J RNA Biol; 2021 Nov; 18(sup2):794-803. PubMed ID: 34806556 [TBL] [Abstract][Full Text] [Related]
36. N6-methyladenosine RNA modification: A promising regulator in central nervous system injury. Wang Q; Liang Y; Luo X; Liu Y; Zhang X; Gao L Exp Neurol; 2021 Nov; 345():113829. PubMed ID: 34339678 [TBL] [Abstract][Full Text] [Related]
37. Chilling-Mediated DNA Methylation Changes during Dormancy and Its Release Reveal the Importance of Epigenetic Regulation during Winter Dormancy in Apple (Malus x domestica Borkh.). Kumar G; Rattan UK; Singh AK PLoS One; 2016; 11(2):e0149934. PubMed ID: 26901339 [TBL] [Abstract][Full Text] [Related]
38. Single-base methylome analysis reveals dynamic epigenomic differences associated with water deficit in apple. Xu J; Zhou S; Gong X; Song Y; van Nocker S; Ma F; Guan Q Plant Biotechnol J; 2018 Feb; 16(2):672-687. PubMed ID: 28796917 [TBL] [Abstract][Full Text] [Related]
39. Dynamics of N6-methyladenosine modification during Alzheimer's disease development. Gao S; Wang Y; Li X; Liang Y; Jin Z; Yang B; Yuan TF; Tian H; Peng B; Rao Y Heliyon; 2024 Mar; 10(6):e26911. PubMed ID: 38496847 [TBL] [Abstract][Full Text] [Related]
40. The effect of promoter methylation on MdMYB1 expression determines the level of anthocyanin accumulation in skins of two non-red apple cultivars. Ma C; Jing C; Chang B; Yan J; Liang B; Liu L; Yang Y; Zhao Z BMC Plant Biol; 2018 Jun; 18(1):108. PubMed ID: 29871614 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]