These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37648651)

  • 1. Single-nuclear transcriptome profiling identifies persistent fibroblast activation in hypertrophic and failing human hearts of patients with longstanding disease.
    Kattih B; Boeckling F; Shumliakivska M; Tombor L; Rasper T; Schmitz K; Hoffmann J; Nicin L; Abplanalp WT; Carstens DC; Arsalan M; Emrich F; Holubec T; Walther T; Puntmann VO; Nagel E; John D; Zeiher AM; Dimmeler S
    Cardiovasc Res; 2023 Nov; 119(15):2550-2562. PubMed ID: 37648651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibroblast-specific adipocyte enhancer binding protein 1 is a potential pathological trigger and prognostic marker for liver fibrosis independent of etiology.
    Zhang W; Li YJ; Zhang N; Chen SY; Tong XF; Wang BQ; Huang T; You H; Chen W
    J Dig Dis; 2023 Oct; 24(10):550-561. PubMed ID: 37776122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endoplasmic Reticulum Protein TXNDC5 Augments Myocardial Fibrosis by Facilitating Extracellular Matrix Protein Folding and Redox-Sensitive Cardiac Fibroblast Activation.
    Shih YC; Chen CL; Zhang Y; Mellor RL; Kanter EM; Fang Y; Wang HC; Hung CT; Nong JY; Chen HJ; Lee TH; Tseng YS; Chen CN; Wu CC; Lin SL; Yamada KA; Nerbonne JM; Yang KC
    Circ Res; 2018 Apr; 122(8):1052-1068. PubMed ID: 29535165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silencing of adipocyte enhancer-binding protein 1 (AEBP1) alleviates renal fibrosis in vivo and in vitro via inhibition of the β-catenin signaling pathway.
    Liu N; Liu D; Cao S; Lei J
    Hum Cell; 2023 May; 36(3):972-986. PubMed ID: 36738398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Widespread Translational Control of Fibrosis in the Human Heart by RNA-Binding Proteins.
    Chothani S; Schäfer S; Adami E; Viswanathan S; Widjaja AA; Langley SR; Tan J; Wang M; Quaife NM; Jian Pua C; D'Agostino G; Guna Shekeran S; George BL; Lim S; Yiqun Cao E; van Heesch S; Witte F; Felkin LE; Christodoulou EG; Dong J; Blachut S; Patone G; Barton PJR; Hubner N; Cook SA; Rackham OJL
    Circulation; 2019 Sep; 140(11):937-951. PubMed ID: 31284728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AEBP1 expression increases with severity of fibrosis in NASH and is regulated by glucose, palmitate, and miR-372-3p.
    Gerhard GS; Hanson A; Wilhelmsen D; Piras IS; Still CD; Chu X; Petrick AT; DiStefano JK
    PLoS One; 2019; 14(7):e0219764. PubMed ID: 31299062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lineage-specific regulatory changes in hypertrophic cardiomyopathy unraveled by single-nucleus RNA-seq and spatial transcriptomics.
    Liu X; Yin K; Chen L; Chen W; Li W; Zhang T; Sun Y; Yuan M; Wang H; Song Y; Wang S; Hu S; Zhou Z
    Cell Discov; 2023 Jan; 9(1):6. PubMed ID: 36646705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy.
    Chaffin M; Papangeli I; Simonson B; Akkad AD; Hill MC; Arduini A; Fleming SJ; Melanson M; Hayat S; Kost-Alimova M; Atwa O; Ye J; Bedi KC; Nahrendorf M; Kaushik VK; Stegmann CM; Margulies KB; Tucker NR; Ellinor PT
    Nature; 2022 Aug; 608(7921):174-180. PubMed ID: 35732739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a mouse model of obesity-related fibrotic cardiomyopathy that recapitulates features of human heart failure with preserved ejection fraction.
    Alex L; Russo I; Holoborodko V; Frangogiannis NG
    Am J Physiol Heart Circ Physiol; 2018 Oct; 315(4):H934-H949. PubMed ID: 30004258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibroblast-Specific Proteotranscriptomes Reveal Distinct Fibrotic Signatures of Human Sinoatrial Node in Nonfailing and Failing Hearts.
    Kalyanasundaram A; Li N; Gardner ML; Artiga EJ; Hansen BJ; Webb A; Freitas MA; Pietrzak M; Whitson BA; Mokadam NA; Janssen PML; Mohler PJ; Fedorov VV
    Circulation; 2021 Jul; 144(2):126-143. PubMed ID: 33874740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Chromatin Targeting of BRD4 Stimulates Cardiac Fibroblast Activation.
    Stratton MS; Bagchi RA; Felisbino MB; Hirsch RA; Smith HE; Riching AS; Enyart BY; Koch KA; Cavasin MA; Alexanian M; Song K; Qi J; Lemieux ME; Srivastava D; Lam MPY; Haldar SM; Lin CY; McKinsey TA
    Circ Res; 2019 Sep; 125(7):662-677. PubMed ID: 31409188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibroblast GSK-3α Promotes Fibrosis via RAF-MEK-ERK Pathway in the Injured Heart.
    Umbarkar P; Tousif S; Singh AP; Anderson JC; Zhang Q; Tallquist MD; Woodgett J; Lal H
    Circ Res; 2022 Sep; 131(7):620-636. PubMed ID: 36052698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Resolution Transcriptomic Profiling of the Heart During Chronic Stress Reveals Cellular Drivers of Cardiac Fibrosis and Hypertrophy.
    McLellan MA; Skelly DA; Dona MSI; Squiers GT; Farrugia GE; Gaynor TL; Cohen CD; Pandey R; Diep H; Vinh A; Rosenthal NA; Pinto AR
    Circulation; 2020 Oct; 142(15):1448-1463. PubMed ID: 32795101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aortic carboxypeptidase-like protein (ACLP) enhances lung myofibroblast differentiation through transforming growth factor β receptor-dependent and -independent pathways.
    Tumelty KE; Smith BD; Nugent MA; Layne MD
    J Biol Chem; 2014 Jan; 289(5):2526-36. PubMed ID: 24344132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamyl-Prolyl-tRNA Synthetase Regulates Proline-Rich Pro-Fibrotic Protein Synthesis During Cardiac Fibrosis.
    Wu J; Subbaiah KCV; Xie LH; Jiang F; Khor ES; Mickelsen D; Myers JR; Tang WHW; Yao P
    Circ Res; 2020 Aug; 127(6):827-846. PubMed ID: 32611237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scleraxis and fibrosis in the pressure-overloaded heart.
    Nagalingam RS; Chattopadhyaya S; Al-Hattab DS; Cheung DYC; Schwartz LY; Jana S; Aroutiounova N; Ledingham DA; Moffatt TL; Landry NM; Bagchi RA; Dixon IMC; Wigle JT; Oudit GY; Kassiri Z; Jassal DS; Czubryt MP
    Eur Heart J; 2022 Dec; 43(45):4739-4750. PubMed ID: 36200607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Cell Reconstruction of Progression Trajectory Reveals Intervention Principles in Pathological Cardiac Hypertrophy.
    Ren Z; Yu P; Li D; Li Z; Liao Y; Wang Y; Zhou B; Wang L
    Circulation; 2020 May; 141(21):1704-1719. PubMed ID: 32098504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting Immune-Fibroblast Crosstalk in Myocardial Infarction and Cardiac Fibrosis.
    Amrute JM; Luo X; Penna V; Bredemeyer A; Yamawaki T; Yang S; Kadyrov F; Heo GS; Shi SY; Lee P; Koenig AL; Kuppe C; Jones C; Kopecky B; Hayat S; Ma P; Terada Y; Fu A; Furtado M; Kreisel D; Stitziel NO; Li CM; Kramann R; Liu Y; Ason B; Lavine KJ
    Res Sq; 2023 Jan; ():. PubMed ID: 36747878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alpha Mangostin Derived from Garcinia magostana Linn Ameliorates Cardiomyocyte Hypertrophy and Fibroblast Phenotypes in Vitro.
    Sari N; Katanasaka Y; Sugiyama Y; Miyazaki Y; Sunagawa Y; Funamoto M; Shimizu K; Shimizu S; Hasegawa K; Morimoto T
    Biol Pharm Bull; 2021; 44(10):1465-1472. PubMed ID: 34602555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Cell RNA Sequencing Reveals Cardiac Fibroblast-Specific Transcriptomic Changes in Dilated Cardiomyopathy.
    Russell-Hallinan A; Cappa O; Kerrigan L; Tonry C; Edgar K; Glezeva N; Ledwidge M; McDonald K; Collier P; Simpson DA; Watson CJ
    Cells; 2024 Apr; 13(9):. PubMed ID: 38727290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.