BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 37648853)

  • 1. LTP induction by structural rather than enzymatic functions of CaMKII.
    Tullis JE; Larsen ME; Rumian NL; Freund RK; Boxer EE; Brown CN; Coultrap SJ; Schulman H; Aoto J; Dell'Acqua ML; Bayer KU
    Nature; 2023 Sep; 621(7977):146-153. PubMed ID: 37648853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CaMKII autophosphorylation is the only enzymatic event required for synaptic memory.
    Chen X; Cai Q; Zhou J; Pleasure SJ; Schulman H; Zhang M; Nicoll RA
    Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2402783121. PubMed ID: 38889145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DAPK1 Mediates LTD by Making CaMKII/GluN2B Binding LTP Specific.
    Goodell DJ; Zaegel V; Coultrap SJ; Hell JW; Bayer KU
    Cell Rep; 2017 Jun; 19(11):2231-2243. PubMed ID: 28614711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CaMKII/GluN2B Protein Interaction Maintains Synaptic Strength.
    Barcomb K; Hell JW; Benke TA; Bayer KU
    J Biol Chem; 2016 Jul; 291(31):16082-9. PubMed ID: 27246855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active calcium/calmodulin-dependent protein kinase II (CaMKII) regulates NMDA receptor mediated postischemic long-term potentiation (i-LTP) by promoting the interaction between CaMKII and NMDA receptors in ischemia.
    Wang N; Chen L; Cheng N; Zhang J; Tian T; Lu W
    Neural Plast; 2014; 2014():827161. PubMed ID: 24734203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CaMKII T286 phosphorylation has distinct essential functions in three forms of long-term plasticity.
    Cook SG; Rumian NL; Bayer KU
    J Biol Chem; 2022 Sep; 298(9):102299. PubMed ID: 35872016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulating β-adrenergic receptors promotes synaptic potentiation by switching CaMKII movement from LTD to LTP mode.
    Larsen ME; Buonarati OR; Qian H; Hell JW; Bayer KU
    J Biol Chem; 2023 Jun; 299(6):104706. PubMed ID: 37061000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay of enzymatic and structural functions of CaMKII in long-term potentiation.
    Kim K; Saneyoshi T; Hosokawa T; Okamoto K; Hayashi Y
    J Neurochem; 2016 Dec; 139(6):959-972. PubMed ID: 27207106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CaMKII Phosphorylation of TARPγ-8 Is a Mediator of LTP and Learning and Memory.
    Park J; Chávez AE; Mineur YS; Morimoto-Tomita M; Lutzu S; Kim KS; Picciotto MR; Castillo PE; Tomita S
    Neuron; 2016 Oct; 92(1):75-83. PubMed ID: 27667007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic memory and CaMKII.
    Nicoll RA; Schulman H
    Physiol Rev; 2023 Oct; 103(4):2877-2925. PubMed ID: 37290118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling the dynamics of CaMKII-NMDAR complex related to memory formation in synapses: the possible roles of threonine 286 autophosphorylation of CaMKII in long term potentiation.
    He Y; Kulasiri D; Samarasinghe S
    J Theor Biol; 2015 Jan; 365():403-19. PubMed ID: 25446714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A significant but rather mild contribution of T286 autophosphorylation to Ca2+/CaM-stimulated CaMKII activity.
    Coultrap SJ; Barcomb K; Bayer KU
    PLoS One; 2012; 7(5):e37176. PubMed ID: 22615928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CaMKII "autonomy" is required for initiating but not for maintaining neuronal long-term information storage.
    Buard I; Coultrap SJ; Freund RK; Lee YS; Dell'Acqua ML; Silva AJ; Bayer KU
    J Neurosci; 2010 Jun; 30(24):8214-20. PubMed ID: 20554872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of CaMKII action in long-term potentiation.
    Lisman J; Yasuda R; Raghavachari S
    Nat Rev Neurosci; 2012 Feb; 13(3):169-82. PubMed ID: 22334212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic activity of CaMKII is not required for its interaction with the glutamate receptor subunit GluN2B.
    Barcomb K; Coultrap SJ; Bayer KU
    Mol Pharmacol; 2013 Dec; 84(6):834-43. PubMed ID: 24056996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CaMKII binding to GluN2B is differentially affected by macromolecular crowding reagents.
    Goodell DJ; Eliseeva TA; Coultrap SJ; Bayer KU
    PLoS One; 2014; 9(5):e96522. PubMed ID: 24796865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMDA receptor-dependent long-term potentiation in mouse hippocampal interneurons shows a unique dependence on Ca(2+)/calmodulin-dependent kinases.
    Lamsa K; Irvine EE; Giese KP; Kullmann DM
    J Physiol; 2007 Nov; 584(Pt 3):885-94. PubMed ID: 17884930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced calcium/calmodulin-dependent protein kinase II activity in the hippocampus is associated with impaired cognitive function in MPTP-treated mice.
    Moriguchi S; Yabuki Y; Fukunaga K
    J Neurochem; 2012 Feb; 120(4):541-51. PubMed ID: 22136399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic neuronal excitation leads to dual metaplasticity in the signaling for structural long-term potentiation.
    Ueda HH; Nagasawa Y; Sato A; Onda M; Murakoshi H
    Cell Rep; 2022 Jan; 38(1):110153. PubMed ID: 34986356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice.
    Moriguchi S; Han F; Nakagawasai O; Tadano T; Fukunaga K
    J Neurochem; 2006 Apr; 97(1):22-9. PubMed ID: 16515554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.