BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 37649037)

  • 1. Beyond the anti-PD-1/PD-L1 era: promising role of the BTLA/HVEM axis as a future target for cancer immunotherapy.
    Sordo-Bahamonde C; Lorenzo-Herrero S; Granda-Díaz R; Martínez-Pérez A; Aguilar-García C; Rodrigo JP; García-Pedrero JM; Gonzalez S
    Mol Cancer; 2023 Aug; 22(1):142. PubMed ID: 37649037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of Cell-Cell Communication in Anaplastic Thyroid Cancer as an Immunotherapeutic Opportunity.
    Chakraborty S; Carnazza M; Jarboe T; DeSouza N; Li XM; Moscatello A; Geliebter J; Tiwari RK
    Adv Exp Med Biol; 2021; 1350():33-66. PubMed ID: 34888843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragments of gD Protein as Inhibitors of BTLA/HVEM Complex Formation-Design, Synthesis, and Cellular Studies.
    Kuncewicz K; Battin C; Sieradzan A; Karczyńska A; Orlikowska M; Wardowska A; Pikuła M; Steinberger P; Rodziewicz-Motowidło S; Spodzieja M
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33238640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-HVEM mAb therapy improves antitumoral immunity both in vitro and in vivo, in a novel transgenic mouse model expressing human HVEM and BTLA molecules challenged with HVEM expressing tumors.
    Demerlé C; Gorvel L; Mello M; Pastor S; Degos C; Zarubica A; Angelis F; Fiore F; Nunes JA; Malissen B; Greillier L; Guittard G; Luche H; Barlesi F; Olive D
    J Immunother Cancer; 2023 May; 11(5):. PubMed ID: 37230538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BTLA/HVEM Axis Induces NK Cell Immunosuppression and Poor Outcome in Chronic Lymphocytic Leukemia.
    Sordo-Bahamonde C; Lorenzo-Herrero S; Gonzalez-Rodriguez AP; R Payer Á; González-García E; López-Soto A; Gonzalez S
    Cancers (Basel); 2021 Apr; 13(8):. PubMed ID: 33917094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and HLA-G.
    Carosella ED; Ploussard G; LeMaoult J; Desgrandchamps F
    Eur Urol; 2015 Aug; 68(2):267-79. PubMed ID: 25824720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BTLA-HVEM Couple in Health and Diseases: Insights for Immunotherapy in Lung Cancer.
    Demerlé C; Gorvel L; Olive D
    Front Oncol; 2021; 11():682007. PubMed ID: 34532285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The BTLA-HVEM complex - The future of cancer immunotherapy.
    Wojciechowicz K; Spodzieja M; Wardowska A
    Eur J Med Chem; 2024 Mar; 268():116231. PubMed ID: 38387336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual inhibition of BTLA and PD-1 can enhance therapeutic efficacy of paclitaxel on intraperitoneally disseminated tumors.
    Sun WZ; Lin HW; Chen WY; Chien CL; Lai YL; Chen J; Chen YL; Cheng WF
    J Immunother Cancer; 2023 Jul; 11(7):. PubMed ID: 37463789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BTLA-derived peptides as inhibitors of BTLA/HVEM complex formation - design, synthesis and biological evaluation.
    Kuncewicz K; Bojko M; Battin C; Karczyńska A; Sieradzan A; Sikorska E; Węgrzyn K; Wojciechowicz K; Wardowska A; Steinberger P; Rodziewicz-Motowidło S; Spodzieja M
    Biomed Pharmacother; 2023 Sep; 165():115161. PubMed ID: 37473684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Next Immune-Checkpoint Inhibitors: PD-1/PD-L1 Blockade in Melanoma.
    Mahoney KM; Freeman GJ; McDermott DF
    Clin Ther; 2015 Apr; 37(4):764-82. PubMed ID: 25823918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PD-1/PD-L1 Blockade Therapy in Advanced Non-Small-Cell Lung Cancer: Current Status and Future Directions.
    Xia L; Liu Y; Wang Y
    Oncologist; 2019 Feb; 24(Suppl 1):S31-S41. PubMed ID: 30819829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomarkers for checkpoint inhibition in hematologic malignancies.
    Atanackovic D; Luetkens T
    Semin Cancer Biol; 2018 Oct; 52(Pt 2):198-206. PubMed ID: 29775689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunotherapy: Beyond Anti-PD-1 and Anti-PD-L1 Therapies.
    Antonia SJ; Vansteenkiste JF; Moon E
    Am Soc Clin Oncol Educ Book; 2016; 35():e450-8. PubMed ID: 27249753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current status and perspectives in translational biomarker research for PD-1/PD-L1 immune checkpoint blockade therapy.
    Ma W; Gilligan BM; Yuan J; Li T
    J Hematol Oncol; 2016 May; 9(1):47. PubMed ID: 27234522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues.
    Hamanishi J; Mandai M; Matsumura N; Abiko K; Baba T; Konishi I
    Int J Clin Oncol; 2016 Jun; 21(3):462-73. PubMed ID: 26899259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune Checkpoint Blockade in Breast Cancer Therapy.
    Bu X; Yao Y; Li X
    Adv Exp Med Biol; 2017; 1026():383-402. PubMed ID: 29282694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The CD160, BTLA, LIGHT/HVEM pathway: a bidirectional switch regulating T-cell activation.
    Cai G; Freeman GJ
    Immunol Rev; 2009 May; 229(1):244-58. PubMed ID: 19426226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunotherapy in advanced gastric cancer, is it the future?
    Coutzac C; Pernot S; Chaput N; Zaanan A
    Crit Rev Oncol Hematol; 2019 Jan; 133():25-32. PubMed ID: 30661655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of short peptides to block BTLA/HVEM interactions for promoting anticancer T-cell responses.
    Spodzieja M; Lach S; Iwaszkiewicz J; Cesson V; Kalejta K; Olive D; Michielin O; Speiser DE; Zoete V; Derré L; Rodziewicz-Motowidło S
    PLoS One; 2017; 12(6):e0179201. PubMed ID: 28594868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.