BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 37649037)

  • 21. Design of short peptides to block BTLA/HVEM interactions for promoting anticancer T-cell responses.
    Spodzieja M; Lach S; Iwaszkiewicz J; Cesson V; Kalejta K; Olive D; Michielin O; Speiser DE; Zoete V; Derré L; Rodziewicz-Motowidło S
    PLoS One; 2017; 12(6):e0179201. PubMed ID: 28594868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular basis for herpesvirus entry mediator recognition by the human immune inhibitory receptor CD160 and its relationship to the cosignaling molecules BTLA and LIGHT.
    Kojima R; Kajikawa M; Shiroishi M; Kuroki K; Maenaka K
    J Mol Biol; 2011 Nov; 413(4):762-72. PubMed ID: 21959263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Blockade of HVEM for Prostate Cancer Immunotherapy in Humanized Mice.
    Aubert N; Brunel S; Olive D; Marodon G
    Cancers (Basel); 2021 Jun; 13(12):. PubMed ID: 34208480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting the HVEM protein using a fragment of glycoprotein D to inhibit formation of the BTLA/HVEM complex.
    Kuncewicz K; Battin C; Węgrzyn K; Sieradzan A; Wardowska A; Sikorska E; Giedrojć I; Smardz P; Pikuła M; Steinberger P; Rodziewicz-Motowidło S; Spodzieja M
    Bioorg Chem; 2022 May; 122():105748. PubMed ID: 35325694
    [TBL] [Abstract][Full Text] [Related]  

  • 25. S100A9
    Tu X; Chen L; Zheng Y; Mu C; Zhang Z; Wang F; Ren Y; Duan Y; Zhang H; Tong Z; Liu L; Sun X; Zhao P; Wang L; Feng X; Fang W; Liu X
    J Exp Clin Cancer Res; 2024 Mar; 43(1):72. PubMed ID: 38454445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The immune checkpoint, HVEM may contribute to immune escape in non-small cell lung cancer lacking PD-L1 expression.
    Ren S; Tian Q; Amar N; Yu H; Rivard CJ; Caldwell C; Ng TL; Tu M; Liu Y; Gao D; Ellison K; Suda K; Rozeboom L; Rivalland G; Mitchell P; Zhou C; Hirsch FR
    Lung Cancer; 2018 Nov; 125():115-120. PubMed ID: 30429008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Attenuation of the BTLA/HVEM Regulatory Network in the Circulation in Primary Sjögren's Syndrome.
    Small A; Cole S; Wang JJ; Nagpal S; Hao LY; Wechalekar MD
    J Clin Med; 2022 Jan; 11(3):. PubMed ID: 35159987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure).
    Kim JM; Chen DS
    Ann Oncol; 2016 Aug; 27(8):1492-504. PubMed ID: 27207108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bladder cancer, a unique model to understand cancer immunity and develop immunotherapy approaches.
    Song D; Powles T; Shi L; Zhang L; Ingersoll MA; Lu YJ
    J Pathol; 2019 Oct; 249(2):151-165. PubMed ID: 31102277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineered nanomedicines block the PD-1/PD-L1 axis for potentiated cancer immunotherapy.
    Li JH; Huang LJ; Zhou HL; Shan YM; Chen FM; Lehto VP; Xu WJ; Luo LQ; Yu HJ
    Acta Pharmacol Sin; 2022 Nov; 43(11):2749-2758. PubMed ID: 35484402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations.
    Jiang Y; Chen M; Nie H; Yuan Y
    Hum Vaccin Immunother; 2019; 15(5):1111-1122. PubMed ID: 30888929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CTLA-4 antibody ipilimumab negatively affects CD4
    Rosskopf S; Leitner J; Zlabinger GJ; Steinberger P
    Cancer Immunol Immunother; 2019 Aug; 68(8):1359-1368. PubMed ID: 31332464
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immune checkpoints and cancer development: Therapeutic implications and future directions.
    Mehdizadeh S; Bayatipoor H; Pashangzadeh S; Jafarpour R; Shojaei Z; Motallebnezhad M
    Pathol Res Pract; 2021 Jul; 223():153485. PubMed ID: 34022684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Blocking PD-1/PD-L1 in Genitourinary Malignancies: To Immunity and Beyond.
    Dallos MC; Drake CG
    Cancer J; 2018; 24(1):20-30. PubMed ID: 29360724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strategies targeting PD-L1 expression and associated opportunities for cancer combination therapy.
    Yin S; Chen Z; Chen D; Yan D
    Theranostics; 2023; 13(5):1520-1544. PubMed ID: 37056572
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances in the clinical development of immune checkpoint blockade therapy.
    Ghahremanloo A; Soltani A; Modaresi SMS; Hashemy SI
    Cell Oncol (Dordr); 2019 Oct; 42(5):609-626. PubMed ID: 31201647
    [TBL] [Abstract][Full Text] [Related]  

  • 37. eEF2K promotes PD-L1 stabilization through inactivating GSK3β in melanoma.
    Chen X; Wang K; Jiang S; Sun H; Che X; Zhang M; He J; Wen Y; Liao M; Li X; Zhou X; Song J; Ren X; Yi W; Yang J; Chen X; Yin M; Cheng Y
    J Immunother Cancer; 2022 Mar; 10(3):. PubMed ID: 35347072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disulfide-Linked Peptides for Blocking BTLA/HVEM Binding.
    Spodzieja M; Kuncewicz K; Sieradzan A; Karczyńska A; Iwaszkiewicz J; Cesson V; Węgrzyn K; Zhukov I; Maszota-Zieleniak M; Michielin O; Speiser DE; Zoete V; Derré L; Rodziewicz-Motowidło S
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Keeping Tumors in Check: A Mechanistic Review of Clinical Response and Resistance to Immune Checkpoint Blockade in Cancer.
    Borcherding N; Kolb R; Gullicksrud J; Vikas P; Zhu Y; Zhang W
    J Mol Biol; 2018 Jul; 430(14):2014-2029. PubMed ID: 29800567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Association of Survival and Immune-Related Biomarkers With Immunotherapy in Patients With Non-Small Cell Lung Cancer: A Meta-analysis and Individual Patient-Level Analysis.
    Yu Y; Zeng D; Ou Q; Liu S; Li A; Chen Y; Lin D; Gao Q; Zhou H; Liao W; Yao H
    JAMA Netw Open; 2019 Jul; 2(7):e196879. PubMed ID: 31290993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.