These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37649197)

  • 21. Integrated N-Co/Carbon Nanofiber Cathode for Highly Efficient Zinc-Air Batteries.
    Rao P; Cui P; Wei Z; Wang M; Ma J; Wang Y; Zhao X
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29708-29717. PubMed ID: 31347824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transition metal chalcogenides carbon-based as bifunctional cathode electrocatalysts for rechargeable zinc-air battery: An updated review.
    Dias GS; Costa JM; Almeida Neto AF
    Adv Colloid Interface Sci; 2023 May; 315():102891. PubMed ID: 37058836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MCM-41/PVA Composite as a Separator for Zinc-Air Batteries.
    Nanthapong S; Kheawhom S; Klaysom C
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32992723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synergistic Bimetallic CoCu-Codecorated Carbon Nanosheet Arrays as Integrated Bifunctional Cathodes for High-Performance Rechargeable/Flexible Zinc-Air Batteries.
    Kuang J; Shen Y; Zhang Y; Yao J; Du J; Yang S; Zhang S; Fang Y; Cai X
    Small; 2023 Apr; 19(17):e2207413. PubMed ID: 36720802
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrogen, Fluorine, and Boron Ternary Doped Carbon Fibers as Cathode Electrocatalysts for Zinc-Air Batteries.
    Wang L; Wang Y; Wu M; Wei Z; Cui C; Mao M; Zhang J; Han X; Liu Q; Ma J
    Small; 2018 May; 14(20):e1800737. PubMed ID: 29665265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Fluorinated Covalent Organic Framework with Accelerated Oxygen Transfer Nanochannels for High-Performance Zinc-Air Batteries.
    Cao Q; Wan L; Xu Z; Kuang W; Liu H; Zhang X; Zhang W; Lu Y; Yao Y; Wang B; Liu K
    Adv Mater; 2023 Apr; 35(17):e2210550. PubMed ID: 36745936
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Progress of carbon-based electrocatalysts for flexible zinc-air batteries in the past 5 years: recent strategies for design, synthesis and performance optimization.
    Qin Y; Ou Z; Xu C; Zhang Z; Yi J; Jiang Y; Wu J; Guo C; Si Y; Zhao T
    Nanoscale Res Lett; 2021 May; 16(1):92. PubMed ID: 34032941
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Surface Modification for Carbon Cathode Materials on Charge-Discharge Performance of Li-Air Batteries.
    Fukushima K; Lee SY; Tanaka K; Sasaki K; Ishizaki T
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular Bridging Enables Isolated Iron Atoms on Stereoassembled Carbon Framework To Boost Oxygen Reduction for Zinc-Air Batteries.
    Wang W; Rui K; Wu K; Wang Y; Ke L; Wang X; Xu F; Lu Y; Zhu J
    Chemistry; 2022 Jul; 28(40):e202200789. PubMed ID: 35522478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Manganese Oxide Catalyst Grown on Carbon Paper as an Air Cathode for High-Performance Rechargeable Zinc-Air Batteries.
    Sumboja A; Ge X; Goh FWT; Li B; Geng D; Hor TSA; Zong Y; Liu Z
    Chempluschem; 2015 Aug; 80(8):1341-1346. PubMed ID: 31973303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrogen-Doped Co
    Yu M; Wang Z; Hou C; Wang Z; Liang C; Zhao C; Tong Y; Lu X; Yang S
    Adv Mater; 2017 Apr; 29(15):. PubMed ID: 28185332
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Dendrite-Resistant Zinc-Air Battery.
    Huang S; Li H; Pei P; Wang K; Xiao Y; Zhang C; Chen C
    iScience; 2020 Jun; 23(6):101169. PubMed ID: 32480127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coupling Fe
    Cao M; Liu Y; Sun K; Li H; Lin X; Zhang P; Zhou L; Wang A; Mehdi S; Wu X; Jiang J; Li B
    Small; 2022 Jul; 18(26):e2202014. PubMed ID: 35644887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxygen vacancy engineering of mesoporous Bi-Fe
    Wang L; Qin Y; Li H; Huang Z; Gao M; Isimjan TT; Yang X
    J Colloid Interface Sci; 2023 Nov; 650(Pt A):719-727. PubMed ID: 37441965
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Electrochemically-Reversible Mesoporous Na
    Zhang J; Zhou X; Wang Y; Qian J; Zhong F; Feng X; Chen W; Ai X; Yang H; Cao Y
    Small; 2019 Nov; 15(46):e1903723. PubMed ID: 31577385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Co
    Li X; Dong F; Xu N; Zhang T; Li K; Qiao J
    ACS Appl Mater Interfaces; 2018 May; 10(18):15591-15601. PubMed ID: 29616793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Boosting the activity and stability
    Deng X; Gu X; Deng Y; Jiang Z; Chen W; Dang D; Lin W; Chi B
    Nanoscale; 2022 Sep; 14(36):13192-13203. PubMed ID: 36047468
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Advances in Flexible Zn-Air Batteries: Materials for Electrodes and Electrolytes.
    Liu H; Xie W; Huang Z; Yao C; Han Y; Huang W
    Small Methods; 2022 Jan; 6(1):e2101116. PubMed ID: 35041275
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Situ Anchoring Co-N-C Nanoparticles on Co
    Liu T; Zhao S; Wang Y; Yu J; Dai Y; Wang J; Sun X; Liu K; Ni M
    Small; 2022 Feb; 18(7):e2105887. PubMed ID: 34889520
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High Performance Bifunctional Electrocatalysts Designed Based on Transition-Metal Sulfides for Rechargeable Zn-Air Batteries.
    Wang B; Li G
    Chemistry; 2022 Dec; 28(67):e202202062. PubMed ID: 35959702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.