These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37649197)

  • 41. Co Nanoparticles Embedded in Mesoporous Walls of Carbon Nanoboxes for Rechargeable Zinc-air Batteries.
    Song L; Zhang J; Huang C; Zhao C; Yin X; Long H; Liu Y; Zhao Y
    Chem Asian J; 2023 May; 18(10):e202300150. PubMed ID: 37017570
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stabilizing Cobalt Single Atoms via Flexible Carbon Membranes as Bifunctional Electrocatalysts for Binder-Free Zinc-Air Batteries.
    Han Y; Duan H; Zhou C; Meng H; Jiang Q; Wang B; Yan W; Zhang R
    Nano Lett; 2022 Mar; 22(6):2497-2505. PubMed ID: 35266721
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanoemulsion-Coated Ni-Fe Hydroxide Self-Supported Electrode as an Air-Breathing Cathode for High-Performance Zinc-Air Batteries.
    Wan L; Xu Z; Cao Q; Liao Y; Wang B; Liu K
    Nano Lett; 2022 Jun; 22(11):4535-4543. PubMed ID: 35587778
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanofiber Composite for Improved Water Retention and Dendrites Suppression in Flexible Zinc-Air Batteries.
    Chen Z; Yang X; Li W; Liang X; Guo J; Li H; He Y; Kim Y
    Small; 2021 Oct; 17(39):e2103048. PubMed ID: 34427378
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Engineering Mn-N
    Wang Z; Deng D; Wang H; Wu S; Zhu L; Xu L; Li H
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1348-1357. PubMed ID: 37801845
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sustainable zinc-air battery chemistry: advances, challenges and prospects.
    Wang Q; Kaushik S; Xiao X; Xu Q
    Chem Soc Rev; 2023 Aug; 52(17):6139-6190. PubMed ID: 37565571
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In Situ Construction of Zinc-Mediated Fe, N-Codoped Hollow Carbon Nanocages with Boosted Oxygen Reduction for Zn-Air Batteries.
    Zhou Q; Min M; Song M; Cui S; Ding N; Wang M; Lei S; Xiong C; Peng X
    Small; 2024 Apr; 20(15):e2307943. PubMed ID: 38037480
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrophobization Engineering of the Air-Cathode Catalyst for Improved Oxygen Diffusion towards Efficient Zinc-Air Batteries.
    Tang K; Hu H; Xiong Y; Chen L; Zhang J; Yuan C; Wu M
    Angew Chem Int Ed Engl; 2022 Jun; 61(24):e202202671. PubMed ID: 35357773
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Carbon-based composites for rechargeable zinc-air batteries: A mini review.
    Liu Y; Lu J; Xu S; Zhang W; Gao D
    Front Chem; 2022; 10():1074984. PubMed ID: 36465872
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interfacial Engineering of Leaf-like Bimetallic MOF-Based Co@NC Nanoarrays Coupled with Ultrathin CoFe-LDH Nanosheets for Rechargeable and Flexible Zn-Air Batteries.
    Ma J; Liu L; Chen Z; Wang M; Wu H; Wang H; Yuan D; Ning X
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36772037
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent Advances in Isolated Single-Atom Catalysts for Zinc Air Batteries: A Focus Review.
    Zhang W; Liu Y; Zhang L; Chen J
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31581611
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hollow Mesoporous Carbon Spheres for High Performance Symmetrical and Aqueous Zinc-Ion Hybrid Supercapacitor.
    Chen S; Yang G; Zhao X; Wang N; Luo T; Chen X; Wu T; Jiang S; van Aken PA; Qu S; Li T; Du L; Zhang J; Wang H; Wang H
    Front Chem; 2020; 8():663. PubMed ID: 33195003
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Integrated and Binder-Free Air Cathodes of Co
    Jiang M; Fu C; Cheng R; Zhang W; Liu T; Wang R; Zhang J; Sun B
    Adv Sci (Weinh); 2020 Sep; 7(18):e2000747. PubMed ID: 34437770
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Flexible Rechargeable Zinc-Air Battery with Excellent Low-Temperature Adaptability.
    Pei Z; Yuan Z; Wang C; Zhao S; Fei J; Wei L; Chen J; Wang C; Qi R; Liu Z; Chen Y
    Angew Chem Int Ed Engl; 2020 Mar; 59(12):4793-4799. PubMed ID: 31916361
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Constructing hollow nanotube-like amorphous vanadium oxide and carbon hybrid via in-situ electrochemical induction for high-performance aqueous zinc-ion batteries.
    Li C; Li M; Xu H; Zhao F; Gong S; Wang H; Qi J; Wang Z; Fan X; Peng W; Liu J
    J Colloid Interface Sci; 2022 Oct; 623():277-284. PubMed ID: 35597011
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cuboid-like phosphorus-doped metal-organic framework-derived CoSe
    Mi H; Li L; Zeng C; Jin Y; Zhang Q; Zhou K; Liu J; Wang H
    J Colloid Interface Sci; 2023 Mar; 633():424-431. PubMed ID: 36462265
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molten-Salt Media Synthesis of N-Doped Carbon Tubes Containing Encapsulated Co Nanoparticles as a Bifunctional Air Cathode for Zinc-Air Batteries.
    Dong Q; Wang H; Ji S; Wang X; Mo Z; Linkov V; Wang R
    Chemistry; 2020 Aug; 26(47):10752-10758. PubMed ID: 32101342
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural Design Strategy and Active Site Regulation of High-Efficient Bifunctional Oxygen Reaction Electrocatalysts for Zn-Air Battery.
    Liu X; Zhang G; Wang L; Fu H
    Small; 2021 Dec; 17(48):e2006766. PubMed ID: 34085767
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hierarchical 3D Oxygenated Cobalt Vanadium Selenide Nanosheets as Advanced Electrode for Flexible Zinc-Cobalt and Zinc-Air Batteries.
    Nguyen TT; Balamurugan J; Kim DH; Kim NH; Lee JH
    Small; 2020 Dec; 16(48):e2004661. PubMed ID: 33169511
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MnO/N-Doped Mesoporous Carbon as Advanced Oxygen Reduction Reaction Electrocatalyst for Zinc-Air Batteries.
    Ding J; Ji S; Wang H; Brett DJL; Pollet BG; Wang R
    Chemistry; 2019 Feb; 25(11):2868-2876. PubMed ID: 30548500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.