BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37649218)

  • 1. Visualizing Ribbon-to-Ribbon Heterogeneity of Chemically Unzipped Wide Graphene Nanoribbons by Silver Nanowire-Based Tip-Enhanced Raman Scattering Microscopy.
    Inose T; Toyouchi S; Hara S; Sugioka S; Walke P; Oyabu R; Fortuni B; Peeters W; Usami Y; Hirai K; De Feyter S; Uji-I H; Fujita Y; Tanaka H
    Small; 2024 Jan; 20(3):e2301841. PubMed ID: 37649218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intact Crystalline Semiconducting Graphene Nanoribbons from Unzipping Nitrogen-Doped Carbon Nanotubes.
    Lee HJ; Lim J; Cho SY; Kim H; Lee C; Lee GY; Sasikala SP; Yun T; Choi DS; Jeong MS; Jung HT; Hong S; Kim SO
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38006-38015. PubMed ID: 31544452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method for Controlling Electrical Properties of Single-Layer Graphene Nanoribbons via Adsorbed Planar Molecular Nanoparticles.
    Tanaka H; Arima R; Fukumori M; Tanaka D; Negishi R; Kobayashi Y; Kasai S; Yamada TK; Ogawa T
    Sci Rep; 2015 Jul; 5():12341. PubMed ID: 26205209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of nitrogen-doped graphene nanoribbons via chemical unzipping.
    Cruz-Silva R; Morelos-Gómez A; Vega-Díaz S; Tristán-López F; Elias AL; Perea-López N; Muramatsu H; Hayashi T; Fujisawa K; Kim YA; Endo M; Terrones M
    ACS Nano; 2013 Mar; 7(3):2192-204. PubMed ID: 23421313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoluminescent Semiconducting Graphene Nanoribbons via Longitudinally Unzipping Single-Walled Carbon Nanotubes.
    Li H; Zhang J; Gholizadeh AB; Brownless J; Fu Y; Cai W; Han Y; Duan T; Wang Y; Ling H; Leifer K; Curry R; Song A
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52892-52900. PubMed ID: 34719923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the Mechanism of Oxidative Unzipping of Multiwall Carbon Nanotubes to Graphene Nanoribbons.
    Dimiev AM; Khannanov A; Vakhitov I; Kiiamov A; Shukhina K; Tour JM
    ACS Nano; 2018 Apr; 12(4):3985-3993. PubMed ID: 29578700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ribbon width on electrical transport properties of graphene nanoribbons.
    Bang K; Chee SS; Kim K; Son M; Jang H; Lee BH; Baik KH; Myoung JM; Ham MH
    Nano Converg; 2018; 5(1):7. PubMed ID: 29577013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.
    Kosynkin DV; Higginbotham AL; Sinitskii A; Lomeda JR; Dimiev A; Price BK; Tour JM
    Nature; 2009 Apr; 458(7240):872-6. PubMed ID: 19370030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons.
    Li YS; Liao JL; Wang SY; Chiang WH
    Sci Rep; 2016 Mar; 6():22755. PubMed ID: 26948486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the unzipping of multiwalled carbon nanotubes.
    dos Santos RP; Perim E; Autreto PA; Brunetto G; Galvão DS
    Nanotechnology; 2012 Nov; 23(46):465702. PubMed ID: 23093108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential electrochemical unzipping of single-walled carbon nanotubes to graphene ribbons revealed by in situ Raman spectroscopy and imaging.
    John R; Shinde DB; Liu L; Ding F; Xu Z; Vijayan C; Pillai VK; Pradeep T
    ACS Nano; 2014 Jan; 8(1):234-42. PubMed ID: 24308315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties.
    Xie L; Wang H; Jin C; Wang X; Jiao L; Suenaga K; Dai H
    J Am Chem Soc; 2011 Jul; 133(27):10394-7. PubMed ID: 21678963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualising structural modification of patterned graphene nanoribbons using tip-enhanced Raman spectroscopy.
    Su W; Esfandiar A; Lancry O; Shao J; Kumar N; Chaigneau M
    Chem Commun (Camb); 2021 Jul; 57(56):6895-6898. PubMed ID: 34151337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation on tip enhanced Raman spectra of graphene.
    Li X; Liu Y; Zeng Z; Wang P; Fang Y; Zhang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 190():378-382. PubMed ID: 28950229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled Preparation and Device Application of Sub-5 nm Graphene Nanoribbons and Graphene Nanoribbon/Carbon Nanotube Intramolecular Heterostructures.
    He Z; Wang K; Yan C; Wan L; Zhou Q; Zhang T; Ye X; Zhang Y; Shi F; Jiang S; Zhao J; Wang K; Chen C
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):7148-7156. PubMed ID: 36692227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons.
    Shinde DB; Debgupta J; Kushwaha A; Aslam M; Pillai VK
    J Am Chem Soc; 2011 Mar; 133(12):4168-71. PubMed ID: 21388198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures.
    Lim J; Maiti UN; Kim NY; Narayan R; Lee WJ; Choi DS; Oh Y; Lee JM; Lee GY; Kang SH; Kim H; Kim YH; Kim SO
    Nat Commun; 2016 Jan; 7():10364. PubMed ID: 26796993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational fabrication of graphene nanoribbons using a nanowire etch mask.
    Bai J; Duan X; Huang Y
    Nano Lett; 2009 May; 9(5):2083-7. PubMed ID: 19344151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution and on-surface synthesis of structurally defined graphene nanoribbons as a new family of semiconductors.
    Narita A; Chen Z; Chen Q; Müllen K
    Chem Sci; 2019 Jan; 10(4):964-975. PubMed ID: 30774890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.