These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 37649392)

  • 1. InDEP: an interpretable machine learning approach to predict cancer driver genes from multi-omics data.
    Yang H; Liu Y; Yang Y; Li D; Wang Z
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37649392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Multi-Omics Characteristics on Identification of Driver Genes Using Machine Learning Algorithms.
    Li F; Chu X; Dai L; Wang J; Liu J; Shang J
    Genes (Basel); 2022 Apr; 13(5):. PubMed ID: 35627101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DGMP: Identifying Cancer Driver Genes by Jointing DGCN and MLP from Multi-omics Genomic Data.
    Zhang SW; Xu JY; Zhang T
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):928-938. PubMed ID: 36464123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From multi-omics data to the cancer druggable gene discovery: a novel machine learning-based approach.
    Yang H; Gan L; Chen R; Li D; Zhang J; Wang Z
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36515158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning methods for prediction of cancer driver genes: a survey paper.
    Andrades R; Recamonde-Mendoza M
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35323900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DriverML: a machine learning algorithm for identifying driver genes in cancer sequencing studies.
    Han Y; Yang J; Qian X; Cheng WC; Liu SH; Hua X; Zhou L; Yang Y; Wu Q; Liu P; Lu Y
    Nucleic Acids Res; 2019 May; 47(8):e45. PubMed ID: 30773592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes.
    Agajanian S; Odeyemi O; Bischoff N; Ratra S; Verkhivker GM
    J Chem Inf Model; 2018 Oct; 58(10):2131-2150. PubMed ID: 30253099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TMO-Net: an explainable pretrained multi-omics model for multi-task learning in oncology.
    Wang FA; Zhuang Z; Gao F; He R; Zhang S; Wang L; Liu J; Li Y
    Genome Biol; 2024 Jun; 25(1):149. PubMed ID: 38845006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Cancer Driver Genes by Integrating Multiomics Data with Graph Neural Networks.
    Song H; Yin C; Li Z; Feng K; Cao Y; Gu Y; Sun H
    Metabolites; 2023 Feb; 13(3):. PubMed ID: 36984779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DriverDBv4: a multi-omics integration database for cancer driver gene research.
    Liu CH; Lai YL; Shen PC; Liu HC; Tsai MH; Wang YD; Lin WJ; Chen FH; Li CY; Wang SC; Hung MC; Cheng WC
    Nucleic Acids Res; 2024 Jan; 52(D1):D1246-D1252. PubMed ID: 37956338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IMI-driver: Integrating multi-level gene networks and multi-omics for cancer driver gene identification.
    Shi P; Han J; Zhang Y; Li G; Zhou X
    PLoS Comput Biol; 2024 Aug; 20(8):e1012389. PubMed ID: 39186807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancing drug-response prediction using multi-modal and -omics machine learning integration (MOMLIN): a case study on breast cancer clinical data.
    Rashid MM; Selvarajoo K
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38904542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying cancer driver genes based on multi-view heterogeneous graph convolutional network and self-attention mechanism.
    Peng W; Wu R; Dai W; Yu N
    BMC Bioinformatics; 2023 Jan; 24(1):16. PubMed ID: 36639646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretable meta-learning of multi-omics data for survival analysis and pathway enrichment.
    Cho HJ; Shu M; Bekiranov S; Zang C; Zhang A
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 36864611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LOTUS: A single- and multitask machine learning algorithm for the prediction of cancer driver genes.
    Collier O; Stoven V; Vert JP
    PLoS Comput Biol; 2019 Sep; 15(9):e1007381. PubMed ID: 31568528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving cancer driver gene identification using multi-task learning on graph convolutional network.
    Peng W; Tang Q; Dai W; Chen T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34643232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sparse overlapping group lasso for integrative multi-omics analysis.
    Park H; Niida A; Miyano S; Imoto S
    J Comput Biol; 2015 Feb; 22(2):73-84. PubMed ID: 25629319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncovering driver genes in breast cancer through an innovative machine learning mutational analysis method.
    Taheri G; Habibi M
    Comput Biol Med; 2024 Mar; 171():108234. PubMed ID: 38430742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel heterophilic graph diffusion convolutional network for identifying cancer driver genes.
    Zhang T; Zhang SW; Xie MY; Li Y
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37055234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MODIG: integrating multi-omics and multi-dimensional gene network for cancer driver gene identification based on graph attention network model.
    Zhao W; Gu X; Chen S; Wu J; Zhou Z
    Bioinformatics; 2022 Oct; 38(21):4901-4907. PubMed ID: 36094338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.