These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37650227)

  • 1. Experimental observations of fractal landscape dynamics in a dense emulsion.
    Rodríguez-Cruz C; Molaei M; Thirumalaiswamy A; Feitosa K; Manoharan VN; Sivarajan S; Reich DH; Riggleman RA; Crocker JC
    Soft Matter; 2023 Sep; 19(35):6805-6813. PubMed ID: 37650227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding soft glassy materials using an energy landscape approach.
    Hwang HJ; Riggleman RA; Crocker JC
    Nat Mater; 2016 Sep; 15(9):1031-6. PubMed ID: 27322823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internal dynamics and activated processes in soft-glassy materials.
    Benzi R; Sbragaglia M; Scagliarini A; Perlekar P; Bernaschi M; Succi S; Toschi F
    Soft Matter; 2015 Feb; 11(7):1271-80. PubMed ID: 25560202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Softness, anomalous dynamics, and fractal-like energy landscape in model cell tissues.
    Li YW; Wei LLY; Paoluzzi M; Ciamarra MP
    Phys Rev E; 2021 Feb; 103(2-1):022607. PubMed ID: 33736043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-Lagged Independent Component Analysis of Random Walks and Protein Dynamics.
    Schultze S; Grubmüller H
    J Chem Theory Comput; 2021 Sep; 17(9):5766-5776. PubMed ID: 34449229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate Protein-Folding Transition-Path Statistics from a Simple Free-Energy Landscape.
    Jacobs WM; Shakhnovich EI
    J Phys Chem B; 2018 Dec; 122(49):11126-11136. PubMed ID: 30091592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics study of the dynamics near the glass transition in ionic liquids.
    Habasaki J; Ngai KL
    Anal Sci; 2008 Oct; 24(10):1321-7. PubMed ID: 18845894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the dynamics of glass-forming liquids from the properties of the potential energy landscape.
    Banerjee S; Dasgupta C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021501. PubMed ID: 22463213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free Energy Landscape of Protein-Protein Encounter Resulting from Brownian Dynamics Simulations of Barnase:Barstar.
    Spaar A; Helms V
    J Chem Theory Comput; 2005 Jul; 1(4):723-36. PubMed ID: 26641694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of fractal dimension during phase ordering of a geometrical multifractal.
    Peleg A; Meerson B
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1764-8. PubMed ID: 11088637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring canyons in glassy energy landscapes using metadynamics.
    Thirumalaiswamy A; Riggleman RA; Crocker JC
    Proc Natl Acad Sci U S A; 2022 Oct; 119(43):e2210535119. PubMed ID: 36256806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics.
    Biess A; Liebermann DG; Flash T
    J Neurosci; 2007 Nov; 27(48):13045-64. PubMed ID: 18045899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous diffusion dynamics of learning in deep neural networks.
    Chen G; Qu CK; Gong P
    Neural Netw; 2022 May; 149():18-28. PubMed ID: 35182851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global perspectives on the energy landscapes of liquids, supercooled liquids, and glassy systems: the potential energy landscape ensemble.
    Wang C; Stratt RM
    J Chem Phys; 2007 Dec; 127(22):224503. PubMed ID: 18081402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective degrees of freedom of a random walk on a fractal.
    Balankin AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062146. PubMed ID: 26764671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase-space reaction network on a multisaddle energy landscape: HCN isomerization.
    Li CB; Matsunaga Y; Toda M; Komatsuzaki T
    J Chem Phys; 2005 Nov; 123(18):184301. PubMed ID: 16292902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of fractal networks.
    Orbach R
    Science; 1986 Feb; 231(4740):814-9. PubMed ID: 17774075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Representations of energy landscapes by sublevelset persistent homology: An example with n-alkanes.
    Mirth J; Zhai Y; Bush J; Alvarado EG; Jordan H; Heim M; Krishnamoorthy B; Pflaum M; Clark A; Z Y; Adams H
    J Chem Phys; 2021 Mar; 154(11):114114. PubMed ID: 33752361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy barriers, entropy barriers, and non-Arrhenius behavior in a minimal glassy model.
    Du X; Weeks ER
    Phys Rev E; 2016 Jun; 93(6):062613. PubMed ID: 27415326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.