BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37650339)

  • 1. Design of experiments approach for systematic optimization of a single-shot diaPASEF plasma proteomics workflow applicable for high-throughput.
    Rice SJ; Belani CP
    Proteomics Clin Appl; 2024 Jan; 18(1):e2300006. PubMed ID: 37650339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Plasma Proteomic Profiling.
    Soni RK
    Methods Mol Biol; 2022; 2546():411-420. PubMed ID: 36127608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Protein Identification and Quantification by the diaPASEF Method on timsTOF SCP.
    Wang J; Tan H; Fu Y; Mishra A; Sun H; Wang Z; Wu Z; Wang X; Serrano GE; Beach TG; Peng J; High AA
    J Am Soc Mass Spectrom; 2024 Jun; 35(6):1253-1260. PubMed ID: 38754071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A gas phase fractionation acquisition scheme integrating ion mobility for rapid diaPASEF library generation.
    Penny J; Arefian M; Schroeder GN; Bengoechea JA; Collins BC
    Proteomics; 2023 Apr; 23(7-8):e2200038. PubMed ID: 36876969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis.
    Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R
    J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition.
    Meier F; Brunner AD; Frank M; Ha A; Bludau I; Voytik E; Kaspar-Schoenefeld S; Lubeck M; Raether O; Bache N; Aebersold R; Collins BC; Röst HL; Mann M
    Nat Methods; 2020 Dec; 17(12):1229-1236. PubMed ID: 33257825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing data-independent acquisition (DIA) spectral library workflows for plasma proteomics studies.
    Rice SJ; Belani CP
    Proteomics; 2022 Sep; 22(17):e2200125. PubMed ID: 35708973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Versatile Workflow for Cerebrospinal Fluid Proteomic Analysis with Mass Spectrometry: A Matter of Choice between Deep Coverage and Sample Throughput.
    Macron C; Núñez Galindo A; Cominetti O; Dayon L
    Methods Mol Biol; 2019; 2044():129-154. PubMed ID: 31432411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic optimization of Liquid Chromatography and Mass Spectrometry parameters on Orbitrap Tribrid mass spectrometer for high efficient data-dependent proteomics.
    Huang P; Liu C; Gao W; Chu B; Cai Z; Tian R
    J Mass Spectrom; 2021 Apr; 56(4):e4653. PubMed ID: 32924238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive Evaluation and Optimization of the Data-Dependent LC-MS/MS Workflow for Deep Proteome Profiling.
    Tang M; Huang P; Wu L; Zhou P; Gong P; Liu X; Wei Q; Hou X; Hu H; Zhang A; Shen C; Gao W; Tian R; Liu C
    Anal Chem; 2023 May; 95(20):7897-7905. PubMed ID: 37164942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Advances in high-throughput proteomic analysis].
    Wu Q; Sui X; Tian R
    Se Pu; 2021 Feb; 39(2):112-117. PubMed ID: 34227342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast and Reproducible Proteomics from Small Amounts of Heart Tissue Enabled by Azo and timsTOF Pro.
    Aballo TJ; Roberts DS; Melby JA; Buck KM; Brown KA; Ge Y
    J Proteome Res; 2021 Aug; 20(8):4203-4211. PubMed ID: 34236868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer.
    Meier F; Brunner AD; Koch S; Koch H; Lubeck M; Krause M; Goedecke N; Decker J; Kosinski T; Park MA; Bache N; Hoerning O; Cox J; Räther O; Mann M
    Mol Cell Proteomics; 2018 Dec; 17(12):2534-2545. PubMed ID: 30385480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential ultracentrifugation enables deep plasma proteomics through enrichment of extracellular vesicles.
    Kverneland AH; Østergaard O; Emdal KB; Svane IM; Olsen JV
    Proteomics; 2023 Apr; 23(7-8):e2200039. PubMed ID: 36398564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Mass Spectrometry-Based Proteomics with dia-PASEF.
    Skowronek P; Meier F
    Methods Mol Biol; 2022; 2456():15-27. PubMed ID: 35612732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Cell Proteomics Analysis with Tecan Uno and SCREEN Workflow.
    Lewandowski M; Morton S; Blake M; Squires E; Ahmad R; Walt DR; Budnik B
    Methods Mol Biol; 2024; 2817():157-175. PubMed ID: 38907154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone Proteomics Method Optimization for Forensic Investigations.
    Gent L; Chiappetta ME; Hesketh S; Palmowski P; Porter A; Bonicelli A; Schwalbe EC; Procopio N
    J Proteome Res; 2024 May; 23(5):1844-1858. PubMed ID: 38621258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. diaTracer enables spectrum-centric analysis of diaPASEF proteomics data.
    Li K; Teo GC; Yang KL; Yu F; Nesvizhskii AI
    bioRxiv; 2024 May; ():. PubMed ID: 38854051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximizing Glycoproteomics Results through an Integrated Parallel Accumulation Serial Fragmentation Workflow.
    Baerenfaenger M; Post MA; Zijlstra F; van Gool AJ; Lefeber DJ; Wessels HJCT
    Anal Chem; 2024 Jun; 96(22):8956-8964. PubMed ID: 38776126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DIA-Based Proteome Profiling of Nasopharyngeal Swabs from COVID-19 Patients.
    Mun DG; Vanderboom PM; Madugundu AK; Garapati K; Chavan S; Peterson JA; Saraswat M; Pandey A
    J Proteome Res; 2021 Aug; 20(8):4165-4175. PubMed ID: 34292740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.