These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 37650483)
1. Equation Elucidating the Catalyst-Layer Proton Conductivity in a Polymer Electrolyte Fuel Cell Based on the Ionomer Distribution Determined Using Small-Angle Neutron Scattering. Harada M; Kadoura H; Takata SI; Iwase H; Kajiya S; Suzuki T; Hasegawa N; Shinohara A; Kato S ACS Appl Mater Interfaces; 2023 Sep; 15(36):42594-42602. PubMed ID: 37650483 [TBL] [Abstract][Full Text] [Related]
2. Distinguishing Adsorbed and Deposited Ionomers in the Catalyst Layer of Polymer Electrolyte Fuel Cells Using Contrast-Variation Small-Angle Neutron Scattering. Harada M; Takata SI; Iwase H; Kajiya S; Kadoura H; Kanaya T ACS Omega; 2021 Jun; 6(23):15257-15263. PubMed ID: 34151104 [TBL] [Abstract][Full Text] [Related]
3. Structure and conductivity of ionomer in PEM fuel cell catalyst layers: a model-based analysis. Olbrich W; Kadyk T; Sauter U; Eikerling M; Gostick J Sci Rep; 2023 Aug; 13(1):14127. PubMed ID: 37644035 [TBL] [Abstract][Full Text] [Related]
4. Humidity-Dependent Hydration and Proton Conductivity of PFSA Ionomer Thin Films at Fuel-Cell-Relevant Temperatures: Effect of Ionomer Equivalent Weight and Side-Chain Characteristics. Eskandari H; Paul DK; Young AP; Karan K ACS Appl Mater Interfaces; 2022 Nov; 14(45):50762-50772. PubMed ID: 36342365 [TBL] [Abstract][Full Text] [Related]
5. Effect of Blended Perfluorinated Sulfonic Acid Ionomer Binder on the Performance of Catalyst Layers in Polymer Electrolyte Membrane Fuel Cells. Kim BS; Park JH; Park JS Membranes (Basel); 2023 Sep; 13(9):. PubMed ID: 37755216 [TBL] [Abstract][Full Text] [Related]
6. Microstructure Investigation of Polymer Electrolyte Fuel Cell Catalyst Layers Containing Perfluorosulfonated Ionomer. Koga M; Matsumoto H; Kunishima M; Tokita M; Masunaga H; Ohta N; Takeuchi A; Mizukado J; Sugimori H; Shinohara K; Uemura S; Yoshida T; Hirai S Membranes (Basel); 2021 Jun; 11(7):. PubMed ID: 34202780 [TBL] [Abstract][Full Text] [Related]
7. Transport and Electrochemical Interface Properties of Ionomers in Low-Pt Loading Catalyst Layers: Effect of Ionomer Equivalent Weight and Relative Humidity. Poojary S; Islam MN; Shrivastava UN; Roberts EPL; Karan K Molecules; 2020 Jul; 25(15):. PubMed ID: 32722653 [TBL] [Abstract][Full Text] [Related]
8. A Numerical Assessment of Mitigation Strategies to Reduce Local Oxygen and Proton Transport Resistances in Polymer Electrolyte Fuel Cells. García-Salaberri PA Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959530 [TBL] [Abstract][Full Text] [Related]
9. Tuning the Ionomer Distribution in the Fuel Cell Catalyst Layer with Scaling the Ionomer Aggregate Size in Dispersion. Doo G; Lee JH; Yuk S; Choi S; Lee DH; Lee DW; Kim HG; Kwon SH; Lee SG; Kim HT ACS Appl Mater Interfaces; 2018 May; 10(21):17835-17841. PubMed ID: 29722957 [TBL] [Abstract][Full Text] [Related]
10. Modulated ionomer distribution in the catalyst layer of polymer electrolyte membrane fuel cells for high temperature operation. Choo MJ; Oh KH; Kim HT; Park JK ChemSusChem; 2014 Aug; 7(8):2335-41. PubMed ID: 24777945 [TBL] [Abstract][Full Text] [Related]
11. Impact of the Composition of Alcohol/Water Dispersion on the Proton Transport and Morphology of Cast Perfluorinated Sulfonic Acid Ionomer Thin Films. Gao X; Yamamoto K; Hirai T; Ohta N; Uchiyama T; Watanabe T; Imai H; Sugawara S; Shinohara K; Uchimoto Y ACS Omega; 2021 Jun; 6(22):14130-14137. PubMed ID: 34124435 [TBL] [Abstract][Full Text] [Related]
12. Unravel-engineer-design: a three-pronged approach to advance ionomer performance at interfaces in proton exchange membrane fuel cells. Obewhere OA; Acurio-Cerda K; Sutradhar S; Dike M; Keloth R; Dishari SK Chem Commun (Camb); 2024 Nov; 60(90):13114-13142. PubMed ID: 39356467 [TBL] [Abstract][Full Text] [Related]
13. Effects of Ink Formulation on Construction of Catalyst Layers for High-Performance Polymer Electrolyte Membrane Fuel Cells. Gong Q; Li C; Liu Y; Ilavsky J; Guo F; Cheng X; Xie J ACS Appl Mater Interfaces; 2021 Aug; 13(31):37004-37013. PubMed ID: 34323080 [TBL] [Abstract][Full Text] [Related]
14. Potential-Dependent Ionomer Rearrangement on the Pt Surface in Polymer Electrolyte Membrane Fuel Cells. Lee DW; Hyun J; Oh E; Seok K; Bae H; Park J; Kim HT ACS Appl Mater Interfaces; 2024 Jan; 16(4):4637-4647. PubMed ID: 38251952 [TBL] [Abstract][Full Text] [Related]
15. Effect of Dispersion Solvents and Ionomers on the Rheology of Catalyst Inks and Catalyst Layer Structure for Proton Exchange Membrane Fuel Cells. Guo Y; Yang D; Li B; Yang D; Ming P; Zhang C ACS Appl Mater Interfaces; 2021 Jun; 13(23):27119-27128. PubMed ID: 34086430 [TBL] [Abstract][Full Text] [Related]
16. In Situ-Grown Ultrathin Catalyst Layers for Improving both Proton Exchange Membrane Fuel Cell and Anion Exchange Membrane Fuel Cell Performances. Xin D; Liu X; Chen B; Jin X; Hao J; Wang Y; Hu R; Fu J; Wang S; Zhu W; Zhuang Z ACS Appl Mater Interfaces; 2024 Aug; 16(32):42363-42371. PubMed ID: 39078706 [TBL] [Abstract][Full Text] [Related]
17. Evolution of the Interfacial Structure of a Catalyst Ink with the Quality of the Dispersing Solvent: A Contrast Variation Small-Angle and Ultrasmall-Angle Neutron Scattering Investigation. Balu R; Choudhury NR; Mata JP; de Campo L; Rehm C; Hill AJ; Dutta NK ACS Appl Mater Interfaces; 2019 Mar; 11(10):9934-9946. PubMed ID: 30762351 [TBL] [Abstract][Full Text] [Related]
18. A Molecular Model of PEMFC Catalyst Layer: Simulation on Reactant Transport and Thermal Conduction. Wang W; Qu Z; Wang X; Zhang J Membranes (Basel); 2021 Feb; 11(2):. PubMed ID: 33672648 [TBL] [Abstract][Full Text] [Related]