BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 37650539)

  • 41. Critical quality attributes in the development of therapeutic nanomedicines toward clinical translation.
    Taha MS; Padmakumar S; Singh A; Amiji MM
    Drug Deliv Transl Res; 2020 Jun; 10(3):766-790. PubMed ID: 32170656
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanomedicines for Reactive Oxygen Species Mediated Approach: An Emerging Paradigm for Cancer Treatment.
    Kwon S; Ko H; You DG; Kataoka K; Park JH
    Acc Chem Res; 2019 Jul; 52(7):1771-1782. PubMed ID: 31241894
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The spatiotemporal journey of nanomedicines in solid tumors on their therapeutic efficacy.
    Qin M; Xia H; Xu W; Chen B; Wang Y
    Adv Drug Deliv Rev; 2023 Dec; 203():115137. PubMed ID: 37949414
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tumor-targeted nanomedicines for cancer theranostics.
    Arranja AG; Pathak V; Lammers T; Shi Y
    Pharmacol Res; 2017 Jan; 115():87-95. PubMed ID: 27865762
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization.
    Sun Q; Zhou Z; Qiu N; Shen Y
    Adv Mater; 2017 Apr; 29(14):. PubMed ID: 28234430
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanomedicines via the pulmonary route: a promising strategy to reach the target?
    Guérin M; Lepeltier E
    Drug Deliv Transl Res; 2024 Aug; 14(8):2276-2297. PubMed ID: 38587757
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Unraveling the role of Intralipid in suppressing off-target delivery and augmenting the therapeutic effects of anticancer nanomedicines.
    Islam R; Gao S; Islam W; Šubr V; Zhou JR; Yokomizo K; Etrych T; Maeda H; Fang J
    Acta Biomater; 2021 May; 126():372-383. PubMed ID: 33774199
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy.
    Zhou Q; Dong C; Fan W; Jiang H; Xiang J; Qiu N; Piao Y; Xie T; Luo Y; Li Z; Liu F; Shen Y
    Biomaterials; 2020 May; 240():119902. PubMed ID: 32105817
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies.
    Youden B; Jiang R; Carrier AJ; Servos MR; Zhang X
    ACS Nano; 2022 Nov; 16(11):17497-17551. PubMed ID: 36322785
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Brave new world revisited: Focus on nanomedicine.
    Fadeel B; Alexiou C
    Biochem Biophys Res Commun; 2020 Nov; 533(1):36-49. PubMed ID: 32921412
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High drug-loading nanomedicines: progress, current status, and prospects.
    Shen S; Wu Y; Liu Y; Wu D
    Int J Nanomedicine; 2017; 12():4085-4109. PubMed ID: 28615938
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanomedicine-based drug targeting for psoriasis: potentials and emerging trends in nanoscale pharmacotherapy.
    Rahman M; Akhter S; Ahmad J; Ahmad MZ; Beg S; Ahmad FJ
    Expert Opin Drug Deliv; 2015 Apr; 12(4):635-52. PubMed ID: 25439967
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relevant Physicochemical Descriptors of "Soft Nanomedicines" to Bypass Biological Barriers.
    Nino-Pariente A; Nebot VJ; Vicent MJ
    Curr Pharm Des; 2016; 22(9):1274-91. PubMed ID: 26675217
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanomedicines for kidney diseases.
    Williams RM; Jaimes EA; Heller DA
    Kidney Int; 2016 Oct; 90(4):740-5. PubMed ID: 27292222
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theranostic nanomedicine.
    Lammers T; Aime S; Hennink WE; Storm G; Kiessling F
    Acc Chem Res; 2011 Oct; 44(10):1029-38. PubMed ID: 21545096
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Not just for tumor targeting: unmet medical needs and opportunities for nanomedicine.
    Lepeltier EA; Nuhn L; Lehr CM; Zentel R
    Nanomedicine (Lond); 2015; 10(20):3147-66. PubMed ID: 26447353
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nanomedicine to overcome antimicrobial resistance: challenges and prospects.
    Zou W; McAdorey A; Yan H; Chen W
    Nanomedicine (Lond); 2023 Feb; 18(5):471-484. PubMed ID: 37170884
    [TBL] [Abstract][Full Text] [Related]  

  • 58. What nanomedicine in the clinic right now really forms nanoparticles?
    Svenson S
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2014; 6(2):125-35. PubMed ID: 24415653
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of Particle Size in Translational Research of Nanomedicines for Successful Drug Delivery: Discrepancies and Inadequacies.
    Chan HW; Chow S; Zhang X; Kwok PCL; Chow SF
    J Pharm Sci; 2023 Sep; 112(9):2371-2384. PubMed ID: 37453526
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function.
    Uzhytchak M; Smolková B; Lunova M; Frtús A; Jirsa M; Dejneka A; Lunov O
    Adv Drug Deliv Rev; 2023 Jun; 197():114828. PubMed ID: 37075952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.