BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 37650867)

  • 1. Evolution of a cross-feeding interaction following a key innovation in a long-term evolution experiment with
    Turner CB; Blount ZD; Mitchell DH; Lenski RE
    Microbiology (Reading); 2023 Aug; 169(8):. PubMed ID: 37650867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Evolution of Citrate Utilization by Escherichia coli by Direct Selection Requires citT and dctA.
    Van Hofwegen DJ; Hovde CJ; Minnich SA
    J Bacteriol; 2016 Feb; 198(7):1022-34. PubMed ID: 26833416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic and phenotypic evolution of
    Blount ZD; Maddamsetti R; Grant NA; Ahmed ST; Jagdish T; Baxter JA; Sommerfeld BA; Tillman A; Moore J; Slonczewski JL; Barrick JE; Lenski RE
    Elife; 2020 May; 9():. PubMed ID: 32469311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replaying Evolution to Test the Cause of Extinction of One Ecotype in an Experimentally Evolved Population.
    Turner CB; Blount ZD; Lenski RE
    PLoS One; 2015; 10(11):e0142050. PubMed ID: 26581098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recursive genomewide recombination and sequencing reveals a key refinement step in the evolution of a metabolic innovation in Escherichia coli.
    Quandt EM; Deatherage DE; Ellington AD; Georgiou G; Barrick JE
    Proc Natl Acad Sci U S A; 2014 Feb; 111(6):2217-22. PubMed ID: 24379390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli.
    Blount ZD; Borland CZ; Lenski RE
    Proc Natl Acad Sci U S A; 2008 Jun; 105(23):7899-906. PubMed ID: 18524956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A case study in evolutionary contingency.
    Blount ZD
    Stud Hist Philos Biol Biomed Sci; 2016 Aug; 58():82-92. PubMed ID: 26787098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic analysis of a key innovation in an experimental Escherichia coli population.
    Blount ZD; Barrick JE; Davidson CJ; Lenski RE
    Nature; 2012 Sep; 489(7417):513-8. PubMed ID: 22992527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine-tuning citrate synthase flux potentiates and refines metabolic innovation in the Lenski evolution experiment.
    Quandt EM; Gollihar J; Blount ZD; Ellington AD; Georgiou G; Barrick JE
    Elife; 2015 Oct; 4():. PubMed ID: 26465114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The landscape of transcriptional and translational changes over 22 years of bacterial adaptation.
    Favate JS; Liang S; Cope AL; Yadavalli SS; Shah P
    Elife; 2022 Oct; 11():. PubMed ID: 36214449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Innovation in an E. coli evolution experiment is contingent on maintaining adaptive potential until competition subsides.
    Leon D; D'Alton S; Quandt EM; Barrick JE
    PLoS Genet; 2018 Apr; 14(4):e1007348. PubMed ID: 29649242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.
    Unden G; Strecker A; Kleefeld A; Kim OB
    EcoSal Plus; 2016 Jun; 7(1):. PubMed ID: 27415771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking genotypic and phenotypic changes in the
    Favate JS; Skalenko KS; Chiles E; Su X; Yadavalli SS; Shah P
    Elife; 2023 Nov; 12():. PubMed ID: 37991493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple long-term, experimentally-evolved populations of Escherichia coli acquire dependence upon citrate as an iron chelator for optimal growth on glucose.
    Leiby N; Harcombe WR; Marx CJ
    BMC Evol Biol; 2012 Aug; 12():151. PubMed ID: 22909317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fumarate dependent protein composition under aerobic and anaerobic growth conditions in Escherichia coli.
    Surmann K; Stopp M; Wörner S; Dhople VM; Völker U; Unden G; Hammer E
    J Proteomics; 2020 Feb; 212():103583. PubMed ID: 31734389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incompatibility of citrate utilization plasmids isolated from Escherichia coli.
    Ishiguro N; Hirose K; Asagi M; Sato G
    J Gen Microbiol; 1981 Mar; 123(1):193-6. PubMed ID: 7033455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-affinity l-malate transporter DcuE of Actinobacillus succinogenes catalyses reversible exchange of C4-dicarboxylates.
    Rhie MN; Cho YB; Lee YJ; Kim OB
    Environ Microbiol Rep; 2019 Apr; 11(2):129-139. PubMed ID: 30452121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Na+-coupled C4-dicarboxylate transporter (Asuc_0304) and aerobic growth of Actinobacillus succinogenes on C4-dicarboxylates.
    Rhie MN; Yoon HE; Oh HY; Zedler S; Unden G; Kim OB
    Microbiology (Reading); 2014 Jul; 160(Pt 7):1533-1544. PubMed ID: 24742960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coexisting ecotypes in long-term evolution emerged from interacting trade-offs.
    Mukherjee A; Ealy J; Huang Y; Benites NC; Polk M; Basan M
    Nat Commun; 2023 Jun; 14(1):3805. PubMed ID: 37365188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting the Design of the Long-Term Evolution Experiment with Escherichia coli.
    Lenski RE
    J Mol Evol; 2023 Jun; 91(3):241-253. PubMed ID: 36790511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.