These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37651152)

  • 1. DFRscore: Deep Learning-Based Scoring of Synthetic Complexity with Drug-Focused Retrosynthetic Analysis for High-Throughput Virtual Screening.
    Kim H; Lee K; Kim C; Lim J; Kim WY
    J Chem Inf Model; 2024 Apr; 64(7):2432-2444. PubMed ID: 37651152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing Retrosynthetic Reaction Prediction with Deep Learning Using Multiscale Reaction Classification.
    Baylon JL; Cilfone NA; Gulcher JR; Chittenden TW
    J Chem Inf Model; 2019 Feb; 59(2):673-688. PubMed ID: 30642173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retrosynthetic accessibility score (RAscore) - rapid machine learned synthesizability classification from AI driven retrosynthetic planning.
    Thakkar A; Chadimová V; Bjerrum EJ; Engkvist O; Reymond JL
    Chem Sci; 2021 Jan; 12(9):3339-3349. PubMed ID: 34164104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning in Computer-Aided Synthesis Planning.
    Coley CW; Green WH; Jensen KF
    Acc Chem Res; 2018 May; 51(5):1281-1289. PubMed ID: 29715002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SynRoute: A Retrosynthetic Planning Software.
    Latendresse M; Malerich JP; Herson J; Krummenacker M; Szeto J; Vu VA; Collins N; Madrid PB
    J Chem Inf Model; 2023 Sep; 63(17):5484-5495. PubMed ID: 37635298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. eToxPred: a machine learning-based approach to estimate the toxicity of drug candidates.
    Pu L; Naderi M; Liu T; Wu HC; Mukhopadhyay S; Brylinski M
    BMC Pharmacol Toxicol; 2019 Jan; 20(1):2. PubMed ID: 30621790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The power of deep learning to ligand-based novel drug discovery.
    Baskin II
    Expert Opin Drug Discov; 2020 Jul; 15(7):755-764. PubMed ID: 32228116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic Compound Synthetic Accessibility Prediction Based on the Graph Attention Mechanism.
    Yu J; Wang J; Zhao H; Gao J; Kang Y; Cao D; Wang Z; Hou T
    J Chem Inf Model; 2022 Jun; 62(12):2973-2986. PubMed ID: 35675668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deep learning based multi-model approach for predicting drug-like chemical compound's toxicity.
    Saravanan KM; Wan JF; Dai L; Zhang J; Zhang JZH; Zhang H
    Methods; 2024 Jun; 226():164-175. PubMed ID: 38702021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Virtual Screening.
    Sykora VJ
    Methods Mol Biol; 2024; 2716():137-152. PubMed ID: 37702938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial intelligence to deep learning: machine intelligence approach for drug discovery.
    Gupta R; Srivastava D; Sahu M; Tiwari S; Ambasta RK; Kumar P
    Mol Divers; 2021 Aug; 25(3):1315-1360. PubMed ID: 33844136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Review on the Recent Applications of Deep Learning in Predictive Drug Toxicological Studies.
    Sinha K; Ghosh N; Sil PC
    Chem Res Toxicol; 2023 Aug; 36(8):1174-1205. PubMed ID: 37561655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfer Learning: Making Retrosynthetic Predictions Based on a Small Chemical Reaction Dataset Scale to a New Level.
    Bai R; Zhang C; Wang L; Yao C; Ge J; Duan H
    Molecules; 2020 May; 25(10):. PubMed ID: 32438572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trends in Deep Learning for Property-driven Drug Design.
    Born J; Manica M
    Curr Med Chem; 2021; 28(38):7862-7886. PubMed ID: 34325627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Intelligence, Machine Learning, and Deep Learning in Real-Life Drug Design Cases.
    Muller C; Rabal O; Diaz Gonzalez C
    Methods Mol Biol; 2022; 2390():383-407. PubMed ID: 34731478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial intelligence: Machine learning approach for screening large database and drug discovery.
    Parvatikar PP; Patil S; Khaparkhuntikar K; Patil S; Singh PK; Sahana R; Kulkarni RV; Raghu AV
    Antiviral Res; 2023 Dec; 220():105740. PubMed ID: 37935248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical assessment of synthetic accessibility scores in computer-assisted synthesis planning.
    Skoraczyński G; Kitlas M; Miasojedow B; Gambin A
    J Cheminform; 2023 Jan; 15(1):6. PubMed ID: 36641473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies for Design of Molecular Structures with a Desired Pharmacophore Using Deep Reinforcement Learning.
    Yoshimori A; Kawasaki E; Kanai C; Tasaka T
    Chem Pharm Bull (Tokyo); 2020; 68(3):227-233. PubMed ID: 32115529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating synthetic accessibility with AI-based generative drug design.
    Parrot M; Tajmouati H; da Silva VBR; Atwood BR; Fourcade R; Gaston-Mathé Y; Do Huu N; Perron Q
    J Cheminform; 2023 Sep; 15(1):83. PubMed ID: 37726842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR.
    Tropsha A; Isayev O; Varnek A; Schneider G; Cherkasov A
    Nat Rev Drug Discov; 2024 Feb; 23(2):141-155. PubMed ID: 38066301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.