BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 37651441)

  • 1. Autism-related KLHL17 and SYNPO act in concert to control activity-dependent dendritic spine enlargement and the spine apparatus.
    Hu HT; Lin YJ; Wang UT; Lee SP; Liou YH; Chen BC; Hsueh YP
    PLoS Biol; 2023 Aug; 21(8):e3002274. PubMed ID: 37651441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KLHL17/Actinfilin, a brain-specific gene associated with infantile spasms and autism, regulates dendritic spine enlargement.
    Hu HT; Huang TN; Hsueh YP
    J Biomed Sci; 2020 Dec; 27(1):103. PubMed ID: 33256713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KLHL17 differentially controls the expression of AMPA- and KA-type glutamate receptors to regulate dendritic spine enlargement.
    Hu HT; Hsueh YP
    J Neurochem; 2024 Jun; ():. PubMed ID: 38898681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptopodin, a molecule involved in the formation of the dendritic spine apparatus, is a dual actin/alpha-actinin binding protein.
    Kremerskothen J; Plaas C; Kindler S; Frotscher M; Barnekow A
    J Neurochem; 2005 Feb; 92(3):597-606. PubMed ID: 15659229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptopodin maintains the neural activity-dependent enlargement of dendritic spines in hippocampal neurons.
    Okubo-Suzuki R; Okada D; Sekiguchi M; Inokuchi K
    Mol Cell Neurosci; 2008 Jun; 38(2):266-76. PubMed ID: 18424168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of Spine Synaptopodin by mGluR1 Is Required for mGluR-LTD.
    Speranza L; Inglebert Y; De Sanctis C; Wu PY; Kalinowska M; McKinney RA; Francesconi A
    J Neurosci; 2022 Mar; 42(9):1666-1678. PubMed ID: 35046120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptopodin regulates the actin-bundling activity of alpha-actinin in an isoform-specific manner.
    Asanuma K; Kim K; Oh J; Giardino L; Chabanis S; Faul C; Reiser J; Mundel P
    J Clin Invest; 2005 May; 115(5):1188-98. PubMed ID: 15841212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular calcium stores mediate metaplasticity at hippocampal dendritic spines.
    Mahajan G; Nadkarni S
    J Physiol; 2019 Jul; 597(13):3473-3502. PubMed ID: 31099020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the role of synaptopodin and the spine apparatus in Hebbian synaptic plasticity - New perspectives and the need for computational modeling.
    Jedlicka P; Deller T
    Neurobiol Learn Mem; 2017 Feb; 138():21-30. PubMed ID: 27470091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-trans retinoic acid induces synaptic plasticity in human cortical neurons.
    Lenz M; Kruse P; Eichler A; Straehle J; Beck J; Deller T; Vlachos A
    Elife; 2021 Mar; 10():. PubMed ID: 33781382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential role of synaptopodin in spine motility by coupling actin to the spine apparatus.
    Deller T; Mundel P; Frotscher M
    Hippocampus; 2000; 10(5):569-81. PubMed ID: 11075827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vasodilator-stimulated phosphoprotein (VASP) induces actin assembly in dendritic spines to promote their development and potentiate synaptic strength.
    Lin WH; Nebhan CA; Anderson BR; Webb DJ
    J Biol Chem; 2010 Nov; 285(46):36010-20. PubMed ID: 20826790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptopodin regulates spine plasticity: mediation by calcium stores.
    Korkotian E; Frotscher M; Segal M
    J Neurosci; 2014 Aug; 34(35):11641-51. PubMed ID: 25164660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines.
    Konietzny A; Grendel J; Kadek A; Bucher M; Han Y; Hertrich N; Dekkers DHW; Demmers JAA; Grünewald K; Uetrecht C; Mikhaylova M
    EMBO J; 2022 Feb; 41(4):e106523. PubMed ID: 34935159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The guanine nucleotide exchange factor (GEF) Asef2 promotes dendritic spine formation via Rac activation and spinophilin-dependent targeting.
    Evans JC; Robinson CM; Shi M; Webb DJ
    J Biol Chem; 2015 Apr; 290(16):10295-308. PubMed ID: 25750125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling.
    Chazeau A; Giannone G
    Cell Mol Life Sci; 2016 Aug; 73(16):3053-73. PubMed ID: 27105623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abl2:Cortactin Interactions Regulate Dendritic Spine Stability via Control of a Stable Filamentous Actin Pool.
    Shaw JE; Kilander MBC; Lin YC; Koleske AJ
    J Neurosci; 2021 Apr; 41(14):3068-3081. PubMed ID: 33622779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural modulation of dendritic spines during synaptic plasticity.
    Fortin DA; Srivastava T; Soderling TR
    Neuroscientist; 2012 Aug; 18(4):326-41. PubMed ID: 21670426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium modeling of spine apparatus-containing human dendritic spines demonstrates an "all-or-nothing" communication switch between the spine head and dendrite.
    Rosado J; Bui VD; Haas CA; Beck J; Queisser G; Vlachos A
    PLoS Comput Biol; 2022 Apr; 18(4):e1010069. PubMed ID: 35468131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional interdependence of the actin regulators CAP1 and cofilin1 in control of dendritic spine morphology.
    Heinze A; Schuldt C; Khudayberdiev S; van Bommel B; Hacker D; Schulz TG; Stringhi R; Marcello E; Mikhaylova M; Rust MB
    Cell Mol Life Sci; 2022 Oct; 79(11):558. PubMed ID: 36264429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.