These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Contribution of Methanesulfonic Acid to the Formation of Molecular Clusters in the Marine Atmosphere. Rasmussen FR; Kubečka J; Elm J J Phys Chem A; 2022 Oct; 126(40):7127-7136. PubMed ID: 36191242 [TBL] [Abstract][Full Text] [Related]
8. Elucidating the Limiting Steps in Sulfuric Acid-Base New Particle Formation. Elm J J Phys Chem A; 2017 Nov; 121(43):8288-8295. PubMed ID: 29019680 [TBL] [Abstract][Full Text] [Related]
9. Clusteromics I: Principles, Protocols, and Applications to Sulfuric Acid-Base Cluster Formation. Elm J ACS Omega; 2021 Mar; 6(11):7804-7814. PubMed ID: 33778292 [TBL] [Abstract][Full Text] [Related]
10. Diamines Can Initiate New Particle Formation in the Atmosphere. Elm J; Passananti M; Kurtén T; Vehkamäki H J Phys Chem A; 2017 Aug; 121(32):6155-6164. PubMed ID: 28732163 [TBL] [Abstract][Full Text] [Related]
11. Structural Effects of Amines in Enhancing Methanesulfonic Acid-Driven New Particle Formation. Shen J; Elm J; Xie HB; Chen J; Niu J; Vehkamäki H Environ Sci Technol; 2020 Nov; 54(21):13498-13508. PubMed ID: 33091300 [TBL] [Abstract][Full Text] [Related]
12. Formation of atmospheric molecular clusters containing nitric acid with ammonia, methylamine, and dimethylamine. Chen DP; Ma W; Yang CH; Li M; Zhou ZZ; Zhang Y; Wang XC; Quan ZJ Environ Sci Process Impacts; 2024 Nov; 26(11):2036-2050. PubMed ID: 39392062 [TBL] [Abstract][Full Text] [Related]
13. The driving effects of common atmospheric molecules for formation of prenucleation clusters: the case of sulfuric acid, formic acid, nitric acid, ammonia, and dimethyl amine. Bready CJ; Fowler VR; Juechter LA; Kurfman LA; Mazaleski GE; Shields GC Environ Sci Atmos; 2022 Nov; 2(6):1469-1486. PubMed ID: 36561556 [TBL] [Abstract][Full Text] [Related]
14. Methanesulfonic acid and iodous acid nucleation: a novel mechanism for marine aerosols. Wu N; Ning A; Liu L; Zu H; Liang D; Zhang X Phys Chem Chem Phys; 2023 Jun; 25(25):16745-16752. PubMed ID: 37323049 [TBL] [Abstract][Full Text] [Related]
15. The Role of Oxalic Acid in New Particle Formation from Methanesulfonic Acid, Methylamine, and Water. Arquero KD; Gerber RB; Finlayson-Pitts BJ Environ Sci Technol; 2017 Feb; 51(4):2124-2130. PubMed ID: 28117992 [TBL] [Abstract][Full Text] [Related]
16. Atmospheric implication of synergy in methanesulfonic acid-base trimers: a theoretical investigation. Chen D; Wang W; Li D; Wang W RSC Adv; 2020 Jan; 10(9):5173-5182. PubMed ID: 35498315 [TBL] [Abstract][Full Text] [Related]
17. Gas-phase catalytic hydration of I Liang Y; Rong H; Liu L; Zhang S; Zhang X; Xu W J Environ Sci (China); 2022 Apr; 114():412-421. PubMed ID: 35459504 [TBL] [Abstract][Full Text] [Related]
18. Unexpected enhancement of sulfuric acid-driven new particle formation by alcoholic amines: The role of ion-induced nucleation. Wang S; Zhang Q; Wang W; Wang Q J Environ Manage; 2023 Dec; 347():119079. PubMed ID: 37748297 [TBL] [Abstract][Full Text] [Related]
19. Unexpected Growth Coordinate in Large Clusters Consisting of Sulfuric Acid and C Elm J J Phys Chem A; 2019 Apr; 123(14):3170-3175. PubMed ID: 30888823 [TBL] [Abstract][Full Text] [Related]
20. Atmospheric implications of hydration on the formation of methanesulfonic acid and methylamine clusters: A theoretical study. Chen D; Li D; Wang C; Luo Y; Liu F; Wang W Chemosphere; 2020 Apr; 244():125538. PubMed ID: 31835047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]