BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37651710)

  • 1. Model-Based Analysis of
    Lescano MR; Macagno J; Berli CLA
    J Agric Food Chem; 2023 Sep; 71(36):13255-13262. PubMed ID: 37651710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Milli-channel array for direct and quick reading of root elongation bioassays.
    Macagno J; Lescano MR; Berli CLA
    Ecotoxicol Environ Saf; 2019 Aug; 178():51-57. PubMed ID: 30991247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L.
    Lyu J; Park J; Kumar Pandey L; Choi S; Lee H; De Saeger J; Depuydt S; Han T
    Ecotoxicol Environ Saf; 2018 Mar; 149():225-232. PubMed ID: 29182968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fluorescence-based bioassay for aquatic macrophytes and its suitability for effect analysis of non-photosystem II inhibitors.
    Küster A; Pohl K; Altenburger R
    Environ Sci Pollut Res Int; 2007 Sep; 14(6):377-83. PubMed ID: 17993220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytotoxic and cytogenotoxic assessment of glyphosate on Lactuca sativa L.
    Vieira C; Marcon C; Droste A
    Braz J Biol; 2022; 84():e257039. PubMed ID: 35293479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of PFOA/PFOS pre-exposure on the toxicity of the herbicides 2,4-D, Atrazine, Diuron and Paraquat to a model aquatic photosynthetic microorganism.
    Rodea-Palomares I; Makowski M; Gonzalo S; González-Pleiter M; Leganés F; Fernández-Piñas F
    Chemosphere; 2015 Nov; 139():65-72. PubMed ID: 26070144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecotoxicological assessment of glyphosate-based herbicides: Effects on different organisms.
    de Brito Rodrigues L; de Oliveira R; Abe FR; Brito LB; Moura DS; Valadares MC; Grisolia CK; de Oliveira DP; de Oliveira GAR
    Environ Toxicol Chem; 2017 Jul; 36(7):1755-1763. PubMed ID: 27517480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolomic Responses of Lettuce (
    Yu JW; Lee JH; Song MH; Keum YS
    J Agric Food Chem; 2023 Apr; 71(13):5143-5153. PubMed ID: 36961423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of risks to listed species from the use of atrazine in the USA: a perspective.
    Smith PN; Armbrust KL; Brain RA; Chen W; Galic N; Ghebremichael L; Giddings JM; Hanson ML; Maul J; Van Der Kraak G; Solomon KR
    J Toxicol Environ Health B Crit Rev; 2021 Aug; 24(6):223-306. PubMed ID: 34219616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Halogenated auxins affect microtubules and root elongation in Lactuca sativa.
    Zhang N; Hasenstein KH
    J Plant Growth Regul; 2000 Dec; 19(4):397-405. PubMed ID: 11762379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and characterisation of single-chain antibody fragments produced in transgenic plants against the organic herbicides atrazine and paraquat.
    Longstaff M; Newell CA; Boonstra B; Strachan G; Learmonth D; Harris WJ; Porter AJ; Hamilton WD
    Biochim Biophys Acta; 1998 Jul; 1381(2):147-60. PubMed ID: 9685621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fate and risk of atrazine and sulfentrazone to nontarget species at an agriculture site.
    Thorngren JL; Harwood AD; Murphy TM; Huff Hartz KE; Fung CY; Lydy MJ
    Environ Toxicol Chem; 2017 May; 36(5):1301-1310. PubMed ID: 27779324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flavodoxin overexpression confers tolerance to oxidative stress in beneficial soil bacteria and improves survival in the presence of the herbicides paraquat and atrazine.
    Coba de la Peña T; Redondo FJ; Fillat MF; Lucas MM; Pueyo JJ
    J Appl Microbiol; 2013 Jul; 115(1):236-46. PubMed ID: 23594228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic, small-scale screening with Arabidopsis reveals herbicides synergies that extend to lettuce.
    Sukhoverkov KV; Mylne JS
    Pest Manag Sci; 2021 Nov; 77(11):4930-4941. PubMed ID: 34184403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxic effects of environmental pollutants: Comparative investigation using Allium cepa L. and Lactuca sativa L.
    Silveira GL; Lima MG; Reis GB; Palmieri MJ; Andrade-Vieria LF
    Chemosphere; 2017 Jul; 178():359-367. PubMed ID: 28340458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of selective phytotoxicity of L-3,4-dihydroxyphenylalanine (l-dopa) in barnyardgrass and lettuce.
    Hachinohe M; Matsumoto H
    J Chem Ecol; 2007 Oct; 33(10):1919-26. PubMed ID: 17899281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of glyphosate and paraquat on root morphology and aboveground growth of Prunus persica seedlings].
    Guo L; Zhang BB; Shen JH; He X; Song HF
    Ying Yong Sheng Tai Xue Bao; 2020 Feb; 31(2):524-532. PubMed ID: 32476346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atrazine and Methyl Viologen Effects on Chlorophyll-a Fluorescence Revisited-Implications in Photosystems Emission and Ecotoxicity Assessment.
    Iriel A; Novo JM; Cordon GB; Lagorio MG
    Photochem Photobiol; 2014 Jan; 90(1):107-12. PubMed ID: 23869421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photo-assisted electrochemical degradation of the commercial herbicide atrazine.
    Malpass GR; Miwa DW; Gomes L; Azevedo EB; Vilela WF; Fukunaga MT; Guimarães JR; Bertazzoli R; Machado SA; Motheo AJ
    Water Sci Technol; 2010; 62(12):2729-36. PubMed ID: 21123900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of spontaneous growth and induced differentiation of murine erythroleukaemia cells by paraquat and atrazine.
    Magnelli L; Fibbi G; Caldini R; Pucci M; Del Rosso M
    Food Chem Toxicol; 1989 Feb; 27(2):125-8. PubMed ID: 2714717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.