BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37651830)

  • 1. Generation of eight hiPSCs lines from two pathogenic variants in CACNA1A using the CRISPR-Cas9 gene editing technology.
    Rivera-Sánchez P; Søndergaard L; Wathikthinnakon M; B D Magnusson H; Frederiksen HR; Aabæk Hammer F; Taleb R; Christian Cassidy C; Tranholm Bruun M; Tümer Z; Holst B; Brasch-Andersen C; Møller RS; Freude K; Chandrasekaran A
    Stem Cell Res; 2023 Sep; 71():103193. PubMed ID: 37651830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of induced pluripotent stem cell lines carrying monoallelic (UCSFi001-A-60) or biallelic (UCSFi001-A-61; UCSFi001-A-62) frameshift variants in CACNA1A using CRISPR/Cas9.
    Hommersom MP; Bijnagte-Schoenmaker C; Albert S; van de Warrenburg BPC; Nadif Kasri N; van Bokhoven H
    Stem Cell Res; 2022 May; 61():102730. PubMed ID: 35286975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of two patient specific GABRD variants and their isogenic controls for modeling epilepsy.
    Kamand M; Taleb R; Wathikthinnakon M; Mohamed FA; Ghazanfari SP; Konstantinov D; Hald JL; Holst B; Brasch-Andersen C; Møller RS; Lemke JR; Krey I; Freude K; Chandrasekaran A
    Stem Cell Res; 2024 Apr; 76():103372. PubMed ID: 38458029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Step-Wise Chondrogenesis of Human Induced Pluripotent Stem Cells and Purification Via a Reporter Allele Generated by CRISPR-Cas9 Genome Editing.
    Adkar SS; Wu CL; Willard VP; Dicks A; Ettyreddy A; Steward N; Bhutani N; Gersbach CA; Guilak F
    Stem Cells; 2019 Jan; 37(1):65-76. PubMed ID: 30378731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of two induced pluripotent stem cell lines (TMOi001-A-5, TMOi001-A-6) carrying variants in DISC1 exon 2 using CRISPR/Cas9 gene editing.
    Heider J; Sperlich D; Vogel S; Breitmeyer R; Volkmer H
    Stem Cell Res; 2022 Oct; 64():102925. PubMed ID: 36154917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium signaling consequences of RyR2 mutations associated with CPVT1 introduced via CRISPR/Cas9 gene editing in human-induced pluripotent stem cell-derived cardiomyocytes: Comparison of RyR2-R420Q, F2483I, and Q4201R.
    Zhang XH; Wei H; Xia Y; Morad M
    Heart Rhythm; 2021 Feb; 18(2):250-260. PubMed ID: 32931925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of a
    Nouri P; Zimmer A; Brüggemann S; Friedrich R; Kühn R; Prakash N
    Cells; 2022 Jan; 11(2):. PubMed ID: 35053384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Both gain-of-function and loss-of-function de novo CACNA1A mutations cause severe developmental epileptic encephalopathies in the spectrum of Lennox-Gastaut syndrome.
    Jiang X; Raju PK; D'Avanzo N; Lachance M; Pepin J; Dubeau F; Mitchell WG; Bello-Espinosa LE; Pierson TM; Minassian BA; Lacaille JC; Rossignol E
    Epilepsia; 2019 Sep; 60(9):1881-1894. PubMed ID: 31468518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome editing of hPSCs: Recent progress in hPSC-based disease modeling for understanding disease mechanisms.
    Choi DK; Kim YK; HoonYu J; Min SH; Park SW
    Prog Mol Biol Transl Sci; 2021; 181():271-287. PubMed ID: 34127196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining the Pathogenicity of a Genomic Variant of Uncertain Significance Using CRISPR/Cas9 and Human-Induced Pluripotent Stem Cells.
    Ma N; Zhang JZ; Itzhaki I; Zhang SL; Chen H; Haddad F; Kitani T; Wilson KD; Tian L; Shrestha R; Wu H; Lam CK; Sayed N; Wu JC
    Circulation; 2018 Dec; 138(23):2666-2681. PubMed ID: 29914921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-Mediated Fluorescent Tagging of Endogenous Proteins in Human Pluripotent Stem Cells.
    Sharma A; Toepfer CN; Ward T; Wasson L; Agarwal R; Conner DA; Hu JH; Seidman CE
    Curr Protoc Hum Genet; 2018 Jan; 96():21.11.1-21.11.20. PubMed ID: 29364519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome Editing of Induced Pluripotent Stem Cells Using CRISPR/Cas9 Ribonucleoprotein Complexes to Model Genetic Ocular Diseases.
    Getachew H; Chinchilla B; Fernandez-Godino R
    Methods Mol Biol; 2022; 2549():321-334. PubMed ID: 34128206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9-Based Genome Editing of Human Induced Pluripotent Stem Cells.
    Giacalone JC; Sharma TP; Burnight ER; Fingert JF; Mullins RF; Stone EM; Tucker BA
    Curr Protoc Stem Cell Biol; 2018 Feb; 44():5B.7.1-5B.7.22. PubMed ID: 29512106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of CRISPR/Cas9 to human-induced pluripotent stem cells: from gene editing to drug discovery.
    De Masi C; Spitalieri P; Murdocca M; Novelli G; Sangiuolo F
    Hum Genomics; 2020 Jun; 14(1):25. PubMed ID: 32591003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9 Gene editing of RyR2 in human stem cell-derived cardiomyocytes provides a novel approach in investigating dysfunctional Ca
    Wei H; Zhang XH; Clift C; Yamaguchi N; Morad M
    Cell Calcium; 2018 Jul; 73():104-111. PubMed ID: 29730419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of two ISL1-tdTomato reporter human induced pluripotent stem cell lines using CRISPR-Cas9 genome editing.
    Tsukamoto S; Nakade K; Wakabayashi T; Nakashima K; Takami M; Hemmi Y; Kuramochi Y; Shimizu T; Arai Y; Matsuo-Takasaki M; Noguchi M; Nakamura Y; Miwa Y; Hayashi Y
    Stem Cell Res; 2021 May; 53():102363. PubMed ID: 34087992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9-Mediated Genome Editing to Generate Clonal iPSC Lines.
    Sanjurjo-Soriano C; Erkilic N; Mamaeva D; Kalatzis V
    Methods Mol Biol; 2022; 2454():589-606. PubMed ID: 33755901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of human induced pluripotent stem cell line carrying SCN5AC2204>T Brugada mutation (MUSli009-A-1) introduced by CRISPR/Cas9-mediated genome editing.
    Angsutararux P; Luanpitpong S; Chingsuwanrote P; Supraditaporn K; Waeteekul S; Terbto P; Lorthongpanich C; Laowtammathron C; U-Pratya Y; Issaragrisil S
    Stem Cell Res; 2019 Dec; 41():101618. PubMed ID: 31677524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting the AAVS1 Site by CRISPR/Cas9 with an Inducible Transgene Cassette for the Neuronal Differentiation of Human Pluripotent Stem Cells.
    Gu J; Rollo B; Sumer H; Cromer B
    Methods Mol Biol; 2022; 2495():99-114. PubMed ID: 35696030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of a heterozygous SCN5A knockout human induced pluripotent stem cell line by CRISPR/Cas9 edition.
    Gizon M; Duboscq-Bidot L; El Kassar L; Bobin P; Ader F; Giraud-Triboult K; Charron P; Villard E; Fontaine V; Neyroud N
    Stem Cell Res; 2022 Apr; 60():102680. PubMed ID: 35093717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.