BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37651862)

  • 1. Improving model capability in simulating spatiotemporal variations and flow contributions of nitrate export in tile-drained catchments.
    Cao P; Lu C; Crumpton W; Helmers M; Green D; Stenback G
    Water Res; 2023 Oct; 244():120489. PubMed ID: 37651862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Springs drive downstream nitrate export from artificially-drained agricultural headwater catchments.
    Goeller BC; Febria CM; Warburton HJ; Hogsden KL; Collins KE; Devlin HS; Harding JS; McIntosh AR
    Sci Total Environ; 2019 Jun; 671():119-128. PubMed ID: 30928741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of nitrate nitrogen fluxes from a tile-drained watershed in central Iowa.
    Tomer MD; Meek DW; Jaynes DB; Hatfield JL
    J Environ Qual; 2003; 32(2):642-53. PubMed ID: 12708689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and assessing water and nutrient balances in a tile-drained agricultural watershed in the U.S. Corn Belt.
    Ren D; Engel B; Mercado JAV; Guo T; Liu Y; Huang G
    Water Res; 2022 Feb; 210():117976. PubMed ID: 34953214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cover crops differentially influenced nitrogen and phosphorus loss in tile drainage and surface runoff from agricultural fields in Ohio, USA.
    Hanrahan BR; King KW; Duncan EW; Shedekar VS
    J Environ Manage; 2021 Sep; 293():112910. PubMed ID: 34098350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrate-nitrogen export: magnitude and patterns from drainage districts to downstream river basins.
    Ikenberry CD; Soupir ML; Schilling KE; Jones CS; Seeman A
    J Environ Qual; 2014 Nov; 43(6):2024-33. PubMed ID: 25602219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrological controls on nutrient concentrations and fluxes in agricultural catchments.
    Petry J; Soulsby C; Malcolm IA; Youngson AE
    Sci Total Environ; 2002 Jul; 294(1-3):95-110. PubMed ID: 12169014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving nitrate load simulation of the SWAT model in an extensively tile-drained watershed.
    Kim J; Her Y; Bhattarai R; Jeong H
    Sci Total Environ; 2023 Dec; 904():166331. PubMed ID: 37595899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating agricultural best management practices in tile-drained subwatersheds of the Mackinaw River, Illinois.
    Lemke AM; Kirkham KG; Lindenbaum TT; Herbert ME; Tear TH; Perry WL; Herkert JR
    J Environ Qual; 2011; 40(4):1215-28. PubMed ID: 21712591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of ecosystem services from edge-of-field practices in tile-drained agricultural systems in the United States Corn Belt Region.
    Mitchell ME; Newcomer-Johnson T; Christensen J; Crumpton W; Dyson B; Canfield TJ; Helmers M; Forshay KJ
    J Environ Manage; 2023 Dec; 348():119220. PubMed ID: 37866183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling stable isotopes and water chemistry to assess the role of hydrological and biogeochemical processes on riverine nitrogen sources.
    Hu M; Liu Y; Zhang Y; Dahlgren RA; Chen D
    Water Res; 2019 Mar; 150():418-430. PubMed ID: 30557828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is a simple model based on two mixing reservoirs able to reproduce the intra-annual dynamics of DOC and NO
    Strohmenger L; Fovet O; Hrachowitz M; Salmon-Monviola J; Gascuel-Odoux C
    Sci Total Environ; 2021 Nov; 794():148715. PubMed ID: 34217086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EPIC tile flow and nitrate loss predictions for three Minnesota cropping systems.
    Chung SW; Gassman PW; Huggins DR; Randall GW
    J Environ Qual; 2001; 30(3):822-30. PubMed ID: 11401271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rye cover crop and gamagrass strip effects on NO3 concentration and load in tile drainage.
    Kaspar TC; Jaynes DB; Parkin TB; Moorman TB
    J Environ Qual; 2007; 36(5):1503-11. PubMed ID: 17766830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors controlling the long-term temporal and spatial patterns of nitrate-nitrogen export in a dairy farming watershed.
    Jiang R; Wang CY; Hatano R; Kuramochi K; Hayakawa A; Woli KP
    Environ Monit Assess; 2015 Apr; 187(4):206. PubMed ID: 25805369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.
    Lee S; Yeo IY; Sadeghi AM; McCarty GW; Hively WD; Lang MW
    PLoS One; 2016; 11(6):e0157637. PubMed ID: 27352119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen and phosphorus removal using tile-treatment wetlands: A 12-year study from the midwestern United States.
    Lemke AM; Kirkham KG; Wallace MP; VanZomeren CM; Berkowitz JF; Kovacic DA
    J Environ Qual; 2022 Sep; 51(5):797-810. PubMed ID: 34914110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating relationships between climate controls and nutrient flux in surface waters, sediments, and subsurface pathways in an agricultural clay catchment of the Great Lakes Basin.
    May H; Rixon S; Gardner S; Goel P; Levison J; Binns A
    Sci Total Environ; 2023 Mar; 864():160979. PubMed ID: 36549520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrate losses in subsurface drainage from a corn-soybean rotation as affected by time of nitrogen application and use of nitrapyrin.
    Randall GW; Vetsch JA; Huffman JR
    J Environ Qual; 2003; 32(5):1764-72. PubMed ID: 14535319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of Nutrient Management on Water Quality Improvement: A Synthesis on Nitrate-Nitrogen Loss from Subsurface Drainage.
    Liu W; Yuan Y; Koropeckyj-Cox L
    Trans ASABE; 2021 Mar; 64(2):675-689. PubMed ID: 34336367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.