These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 37652024)

  • 1. Target deconvolution with matrix-augmented pooling strategy reveals cell-specific drug-protein interactions.
    Ji H; Lu X; Zhao S; Wang Q; Liao B; Bauer LG; Huber KVM; Luo R; Tian R; Tan CSH
    Cell Chem Biol; 2023 Nov; 30(11):1478-1487.e7. PubMed ID: 37652024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome Integral Solubility Alteration (PISA) Assay in Mammalian Cells for Deep, High-Confidence, and High-Throughput Target Deconvolution.
    Zhang X; Lytovchenko O; Lundström SL; Zubarev RA; Gaetani M
    Bio Protoc; 2022 Nov; 12(22):. PubMed ID: 36532690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug Target Identification in Tissues by Thermal Proteome Profiling.
    Mateus A; Kurzawa N; Perrin J; Bergamini G; Savitski MM
    Annu Rev Pharmacol Toxicol; 2022 Jan; 62():465-482. PubMed ID: 34499524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precipitate-Supported Thermal Proteome Profiling Coupled with Deep Learning for Comprehensive Screening of Drug Target Proteins.
    Ruan C; Ning W; Liu Z; Zhang X; Fang Z; Li Y; Dang Y; Xue Y; Ye M
    ACS Chem Biol; 2022 Jan; 17(1):252-262. PubMed ID: 34989232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal Proteome Profiling for Drug Target Identification and Probing of Protein States.
    Sauer P; Bantscheff M
    Methods Mol Biol; 2023; 2718():73-98. PubMed ID: 37665455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the utility of ultrafast MS1-only proteomics in drug target discovery studies based on thermal proteome profiling method.
    Fedorov II; Bubis JA; Kazakova EM; Lobas AA; Ivanov MV; Emekeeva DD; Tarasova IA; Nazarov AA; Gorshkov MV
    Anal Bioanal Chem; 2024 May; ():. PubMed ID: 38744720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CETSA and thermal proteome profiling strategies for target identification and drug discovery of natural products.
    Tu Y; Tan L; Tao H; Li Y; Liu H
    Phytomedicine; 2023 Jul; 116():154862. PubMed ID: 37216761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal proteome profiling: Insights into protein modifications, associations, and functions.
    Le Sueur C; Hammarén HM; Sridharan S; Savitski MM
    Curr Opin Chem Biol; 2022 Dec; 71():102225. PubMed ID: 36368297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical proteomics: terra incognita for novel drug target profiling.
    Huang F; Zhang B; Zhou S; Zhao X; Bian C; Wei Y
    Chin J Cancer; 2012 Nov; 31(11):507-18. PubMed ID: 22640626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability-based approaches in chemoproteomics.
    George AL; Dueñas ME; Marín-Rubio JL; Trost M
    Expert Rev Mol Med; 2024 Apr; 26():e6. PubMed ID: 38604802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonparametric Analysis of Thermal Proteome Profiles Reveals Novel Drug-binding Proteins.
    Childs D; Bach K; Franken H; Anders S; Kurzawa N; Bantscheff M; Savitski MM; Huber W
    Mol Cell Proteomics; 2019 Dec; 18(12):2506-2515. PubMed ID: 31582558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaled-Down Thermal Profiling and Coaggregation Analysis of the Proteome for Drug Target and Protein Interaction Analysis.
    Lu X; Liao B; Sun S; Mao Y; Wu Q; Tian R; Tan CSH
    Anal Chem; 2023 Sep; 95(37):13844-13854. PubMed ID: 37656141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Quantitative Mass Spectrometric Methods for Drug Target Identification by Thermal Proteome Profiling.
    George AL; Sidgwick FR; Watt JE; Martin MP; Trost M; Marín-Rubio JL; Dueñas ME
    J Proteome Res; 2023 Aug; 22(8):2629-2640. PubMed ID: 37439223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal proteome profiling: unbiased assessment of protein state through heat-induced stability changes.
    Mateus A; Määttä TA; Savitski MM
    Proteome Sci; 2016; 15():13. PubMed ID: 28652855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Recent advances in protein precipitation-based methods for drug-target screening].
    Liu T; Qin WJ; Yang HJ
    Se Pu; 2024 Jul; 42(7):613-622. PubMed ID: 38966970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteome-Wide Deconvolution of Drug Targets and Binding Sites by Lysine Reactivity Profiling.
    Ruan C; Zhou J; Li Z; Li K; Fang Z; Zhang X; Ye M
    Anal Chem; 2022 Feb; 94(7):3352-3359. PubMed ID: 35147412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target deconvolution from phenotype-based drug discovery by using chemical proteomics approaches.
    Kubota K; Funabashi M; Ogura Y
    Biochim Biophys Acta Proteins Proteom; 2019 Jan; 1867(1):22-27. PubMed ID: 30392561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing Drug-Target Interactions: Shifting towards the Clinic.
    Schirle M
    Trends Pharmacol Sci; 2020 May; 41(5):295-297. PubMed ID: 32192756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal proteome profiling for interrogating protein interactions.
    Mateus A; Kurzawa N; Becher I; Sridharan S; Helm D; Stein F; Typas A; Savitski MM
    Mol Syst Biol; 2020 Mar; 16(3):e9232. PubMed ID: 32133759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass spectrometry-based Cellular Thermal Shift Assay (CETSA®) for target deconvolution in phenotypic drug discovery.
    Friman T
    Bioorg Med Chem; 2020 Jan; 28(1):115174. PubMed ID: 31767405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.