These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 37652024)

  • 21. Target Engagement of Small Molecules: Thermal Profiling Approaches on Different Levels.
    Reckzeh ES; Brockmeyer A; Metz M; Waldmann H; Janning P
    Methods Mol Biol; 2019; 1888():73-98. PubMed ID: 30519941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An isothermal shift assay for proteome scale drug-target identification.
    Ball KA; Webb KJ; Coleman SJ; Cozzolino KA; Jacobsen J; Jones KR; Stowell MHB; Old WM
    Commun Biol; 2020 Feb; 3(1):75. PubMed ID: 32060372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Thermal proteome profiling: a technique for a comprehensive assessment of protein status].
    Qiu Y; Zhai B; Bai Y; Chen S; Zhang J
    Sheng Wu Gong Cheng Xue Bao; 2022 Oct; 38(10):3628-3637. PubMed ID: 36305398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved Proteomics-Based Drug Mechanism-of-Action Studies Using 16-Plex Isobaric Mass Tags.
    Zinn N; Werner T; Doce C; Mathieson T; Boecker C; Sweetman G; Fufezan C; Bantscheff M
    J Proteome Res; 2021 Mar; 20(3):1792-1801. PubMed ID: 33621079
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Profiling of Small Molecules by Chemical Proteomics.
    Huber KVM; Superti-Furga G
    Methods Mol Biol; 2016; 1394():211-218. PubMed ID: 26700051
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent advances in proteome-wide label-free target deconvolution for bioactive small molecules.
    Sun J; Prabhu N; Tang J; Yang F; Jia L; Guo J; Xiao K; Tam WL; Nordlund P; Dai L
    Med Res Rev; 2021 Nov; 41(6):2893-2926. PubMed ID: 33533067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tandem mass tag-based thermal proteome profiling for the discovery of drug-protein interactions in cancer cells.
    Johnson FD; Hughes CS; Liu A; Lockwood WW; Morin GB
    STAR Protoc; 2023 Mar; 4(1):102012. PubMed ID: 36856765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-throughput drug target discovery using a fully automated proteomics sample preparation platform.
    Wu Q; Zheng J; Sui X; Fu C; Cui X; Liao B; Ji H; Luo Y; He A; Lu X; Xue X; Tan CSH; Tian R
    Chem Sci; 2024 Feb; 15(8):2833-2847. PubMed ID: 38404368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental and data analysis advances in thermal proteome profiling.
    Figueroa-Navedo AM; Ivanov AR
    Cell Rep Methods; 2024 Feb; 4(2):100717. PubMed ID: 38412830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Advances in applications of activity-based chemical probes in the characterization of amino acid reactivities].
    Li J; Wang G; Ye M; Qin H
    Se Pu; 2023 Jan; 41(1):14-23. PubMed ID: 36633073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell-based proteome profiling of potential dasatinib targets by use of affinity-based probes.
    Shi H; Zhang CJ; Chen GY; Yao SQ
    J Am Chem Soc; 2012 Feb; 134(6):3001-14. PubMed ID: 22242683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A brief introduction to chemical proteomics for target deconvolution.
    Dong ZC; Wang Y; Yang F; Wan F
    Eur Rev Med Pharmacol Sci; 2022 Sep; 26(17):6014-6026. PubMed ID: 36111901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A mass spectrometry-based proteome map of drug action in lung cancer cell lines.
    Ruprecht B; Di Bernardo J; Wang Z; Mo X; Ursu O; Christopher M; Fernandez RB; Zheng L; Dill BD; Wang H; Xu Y; Liaw A; Mortison JD; Siriwardana N; Andresen B; Glick M; Tata JR; Kutilek V; Cornella-Taracido I; Chi A
    Nat Chem Biol; 2020 Oct; 16(10):1111-1119. PubMed ID: 32690943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The proteomics big challenge for biomarkers and new drug-targets discovery.
    Savino R; Paduano S; Preianò M; Terracciano R
    Int J Mol Sci; 2012 Oct; 13(11):13926-48. PubMed ID: 23203042
    [TBL] [Abstract][Full Text] [Related]  

  • 35. STPP-UP: An alternative method for drug target identification using protein thermal stability.
    Zijlmans DW; Hernández-Quiles M; Jansen PWTC; Becher I; Stein F; Savitski MM; Vermeulen M
    J Biol Chem; 2023 Nov; 299(11):105279. PubMed ID: 37742922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteome Integral Solubility Alteration (PISA) for High-Throughput Ligand Target Deconvolution with Increased Statistical Significance and Reduced Sample Amount.
    Gaetani M; Zubarev RA
    Methods Mol Biol; 2023; 2554():91-106. PubMed ID: 36178622
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal Proteome Profiling to Identify Protein-ligand Interactions in the Apicomplexan Parasite
    Herneisen AL; Lourido S
    Bio Protoc; 2021 Nov; 11(21):e4207. PubMed ID: 34859122
    [No Abstract]   [Full Text] [Related]  

  • 38. Matrix Thermal Shift Assay for Fast Construction of Multidimensional Ligand-Target Space.
    Ruan C; Wang Y; Zhang X; Lyu J; Zhang N; Ma Y; Shi C; Qu G; Ye M
    Anal Chem; 2022 May; 94(17):6482-6490. PubMed ID: 35442643
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying drug targets with thermal proteome profiling using IBT-16plex.
    Shi Z; Ren Y; Li S; Hao P
    Rapid Commun Mass Spectrom; 2024 Jan; 38(1):e9673. PubMed ID: 38073198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Obtaining Functional Proteomics Insights From Thermal Proteome Profiling Through Optimized Melt Shift Calculation and Statistical Analysis With InflectSSP.
    McCracken NA; Liu H; Runnebohm AM; Wijeratne HRS; Wijeratne AB; Staschke KA; Mosley AL
    Mol Cell Proteomics; 2023 Sep; 22(9):100630. PubMed ID: 37562535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.