BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37652263)

  • 1. AI-based classification of three common malignant tumors in neuro-oncology: A multi-institutional comparison of machine learning and deep learning methods.
    Bathla G; Dhruba DD; Soni N; Liu Y; Larson NB; Kassmeyer BA; Mohan S; Roberts-Wolfe D; Rathore S; Le NH; Zhang H; Sonka M; Priya S
    J Neuroradiol; 2024 May; 51(3):258-264. PubMed ID: 37652263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation Between Glioblastoma and Metastatic Disease on Conventional MRI Imaging Using 3D-Convolutional Neural Networks: Model Development and Validation.
    Bathla G; Dhruba DD; Liu Y; Le NH; Soni N; Zhang H; Mohan S; Roberts-Wolfe D; Rathore S; Sonka M; Priya S; Agarwal A
    Acad Radiol; 2024 May; 31(5):2041-2049. PubMed ID: 37977889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning based differentiation of glioblastoma from brain metastasis using MRI derived radiomics.
    Priya S; Liu Y; Ward C; Le NH; Soni N; Pillenahalli Maheshwarappa R; Monga V; Zhang H; Sonka M; Bathla G
    Sci Rep; 2021 May; 11(1):10478. PubMed ID: 34006893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning for Automatic Differential Diagnosis of Primary Central Nervous System Lymphoma and Glioblastoma: Multi-Parametric Magnetic Resonance Imaging Based Convolutional Neural Network Model.
    Xia W; Hu B; Li H; Shi W; Tang Y; Yu Y; Geng C; Wu Q; Yang L; Yu Z; Geng D; Li Y
    J Magn Reson Imaging; 2021 Sep; 54(3):880-887. PubMed ID: 33694250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiomics-based differentiation between glioblastoma and primary central nervous system lymphoma: a comparison of diagnostic performance across different MRI sequences and machine learning techniques.
    Bathla G; Priya S; Liu Y; Ward C; Le NH; Soni N; Maheshwarappa RP; Monga V; Zhang H; Sonka M
    Eur Radiol; 2021 Nov; 31(11):8703-8713. PubMed ID: 33890149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrative non-invasive malignant brain tumors classification and Ki-67 labeling index prediction pipeline with radiomics approach.
    Zhang L; Liu X; Xu X; Liu W; Jia Y; Chen W; Fu X; Li Q; Sun X; Zhang Y; Shu S; Zhang X; Xiang R; Chen H; Sun P; Geng D; Yu Z; Liu J; Wang J
    Eur J Radiol; 2023 Jan; 158():110639. PubMed ID: 36463703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning With an Attention Mechanism for Differentiating the Origin of Brain Metastasis Using MR images.
    Jiao T; Li F; Cui Y; Wang X; Li B; Shi F; Xia Y; Zhou Q; Zeng Q
    J Magn Reson Imaging; 2023 Nov; 58(5):1624-1635. PubMed ID: 36965182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI.
    Kim Y; Cho HH; Kim ST; Park H; Nam D; Kong DS
    Neuroradiology; 2018 Dec; 60(12):1297-1305. PubMed ID: 30232517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiparametric-MRI-Based Radiomics Model for Differentiating Primary Central Nervous System Lymphoma From Glioblastoma: Development and Cross-Vendor Validation.
    Xia W; Hu B; Li H; Geng C; Wu Q; Yang L; Yin B; Gao X; Li Y; Geng D
    J Magn Reson Imaging; 2021 Jan; 53(1):242-250. PubMed ID: 32864825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning Radiomics for the Assessment of Telomerase Reverse Transcriptase Promoter Mutation Status in Patients With Glioblastoma Using Multiparametric MRI.
    Zhang H; Zhang H; Zhang Y; Zhou B; Wu L; Lei Y; Huang B
    J Magn Reson Imaging; 2023 Nov; 58(5):1441-1451. PubMed ID: 36896953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiparametric MRI-based radiomics model for predicting human papillomavirus status in oropharyngeal squamous cell carcinoma: optimization using oversampling and machine learning techniques.
    Sim Y; Kim M; Kim J; Lee SK; Han K; Sohn B
    Eur Radiol; 2024 May; 34(5):3102-3112. PubMed ID: 37848774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma.
    Nakagawa M; Nakaura T; Namimoto T; Kitajima M; Uetani H; Tateishi M; Oda S; Utsunomiya D; Makino K; Nakamura H; Mukasa A; Hirai T; Yamashita Y
    Eur J Radiol; 2018 Nov; 108():147-154. PubMed ID: 30396648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving imaging and computational reproducibility on multiparametric MRI radiomics features in brain tumor diagnosis: phantom and clinical validation.
    Cheong EN; Park JE; Park SY; Jung SC; Kim HS
    Eur Radiol; 2024 Mar; 34(3):2008-2023. PubMed ID: 37665391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiparametric imaging-based differentiation of lymphoma and glioblastoma: using T1-perfusion, diffusion, and susceptibility-weighted MRI.
    Saini J; Kumar Gupta P; Awasthi A; Pandey CM; Singh A; Patir R; Ahlawat S; Sadashiva N; Mahadevan A; Kumar Gupta R
    Clin Radiol; 2018 Nov; 73(11):986.e7-986.e15. PubMed ID: 30197047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of glioblastoma versus primary central nervous system lymphoma using convolutional neural networks.
    McAvoy M; Prieto PC; Kaczmarzyk JR; Fernández IS; McNulty J; Smith T; Yu KH; Gormley WB; Arnaout O
    Sci Rep; 2021 Jul; 11(1):15219. PubMed ID: 34312463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach.
    Suh HB; Choi YS; Bae S; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK
    Eur Radiol; 2018 Sep; 28(9):3832-3839. PubMed ID: 29626238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiomic Based Machine Learning Performance for a Three Class Problem in Neuro-Oncology: Time to Test the Waters?
    Priya S; Liu Y; Ward C; Le NH; Soni N; Pillenahalli Maheshwarappa R; Monga V; Zhang H; Sonka M; Bathla G
    Cancers (Basel); 2021 May; 13(11):. PubMed ID: 34073840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T2-FLAIR mismatch sign and machine learning-based multiparametric MRI radiomics in predicting IDH mutant 1p/19q non-co-deleted diffuse lower-grade gliomas.
    Tang WT; Su CQ; Lin J; Xia ZW; Lu SS; Hong XN
    Clin Radiol; 2024 May; 79(5):e750-e758. PubMed ID: 38360515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model.
    Conte GM; Weston AD; Vogelsang DC; Philbrick KA; Cai JC; Barbera M; Sanvito F; Lachance DH; Jenkins RB; Tobin WO; Eckel-Passow JE; Erickson BJ
    Radiology; 2021 May; 299(2):313-323. PubMed ID: 33687284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiating Glioblastoma from Primary Central Nervous System Lymphoma: The Value of Shaping and Nonenhancing Peritumoral Hyperintense Gyral Lesion on FLAIR Imaging.
    Wang P; Shi YH; Li JY; Zhang CZ
    World Neurosurg; 2021 May; 149():e696-e704. PubMed ID: 33548537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.