These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37652366)

  • 1. Nitric oxide and thioredoxin modulate the activity of caspase 9 in HepG2 cells.
    Chakraborty S; Choudhuri A; Mishra A; Bhattacharyya C; Billiar TR; Stoyanovsky DA; Sengupta R
    Biochim Biophys Acta Gen Subj; 2023 Nov; 1867(11):130452. PubMed ID: 37652366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thioredoxin and lipoic acid catalyze the denitrosation of low molecular weight and protein S-nitrosothiols.
    Stoyanovsky DA; Tyurina YY; Tyurin VA; Anand D; Mandavia DN; Gius D; Ivanova J; Pitt B; Billiar TR; Kagan VE
    J Am Chem Soc; 2005 Nov; 127(45):15815-23. PubMed ID: 16277524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thioredoxin-interacting protein (Txnip) is a feedback regulator of S-nitrosylation.
    Forrester MT; Seth D; Hausladen A; Eyler CE; Foster MW; Matsumoto A; Benhar M; Marshall HE; Stamler JS
    J Biol Chem; 2009 Dec; 284(52):36160-36166. PubMed ID: 19847012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide and dihydrolipoic acid modulate the activity of caspase 3 in HepG2 cells.
    Sengupta R; Billiar TR; Atkins JL; Kagan VE; Stoyanovsky DA
    FEBS Lett; 2009 Nov; 583(21):3525-30. PubMed ID: 19822150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox regulation of metabolic and signaling pathways by thioredoxin and glutaredoxin in NOS-3 overexpressing hepatoblastoma cells.
    González R; López-Grueso MJ; Muntané J; Bárcena JA; Padilla CA
    Redox Biol; 2015 Dec; 6():122-134. PubMed ID: 26210445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide and thioredoxin type 1 modulate the activity of caspase 8 in HepG2 cells.
    Sengupta R; Billiar TR; Kagan VE; Stoyanovsky DA
    Biochem Biophys Res Commun; 2010 Jan; 391(1):1127-30. PubMed ID: 20005201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins.
    Benhar M; Forrester MT; Hess DT; Stamler JS
    Science; 2008 May; 320(5879):1050-4. PubMed ID: 18497292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation.
    Sengupta R; Holmgren A
    Antioxid Redox Signal; 2013 Jan; 18(3):259-69. PubMed ID: 22702224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the catalytic activity and structure of human thioredoxin 1 via oxidation and S-nitrosylation of cysteine residues.
    Hashemy SI; Holmgren A
    J Biol Chem; 2008 Aug; 283(32):21890-8. PubMed ID: 18544525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of thioredoxin in the regulation of cellular processes by S-nitrosylation.
    Sengupta R; Holmgren A
    Biochim Biophys Acta; 2012 Jun; 1820(6):689-700. PubMed ID: 21878369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S-Denitrosylation: A Crosstalk between Glutathione and Redoxin Systems.
    Chakraborty S; Sircar E; Bhattacharyya C; Choudhuri A; Mishra A; Dutta S; Bhatta S; Sachin K; Sengupta R
    Antioxidants (Basel); 2022 Sep; 11(10):. PubMed ID: 36290644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory nitrosylation of mammalian thioredoxin reductase 1: Molecular characterization and evidence for its functional role in cellular nitroso-redox imbalance.
    Engelman R; Ziv T; Arnér ESJ; Benhar M
    Free Radic Biol Med; 2016 Aug; 97():375-385. PubMed ID: 27377780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular S-denitrosylases: Potential role and interplay of Thioredoxin, TRP14, and Glutaredoxin systems in thiol-dependent protein denitrosylation.
    Chatterji A; Sengupta R
    Int J Biochem Cell Biol; 2021 Feb; 131():105904. PubMed ID: 33359085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leveraging the redundancy of S-denitrosylases in response to S-nitrosylation of caspases: Experimental strategies and beyond.
    Chakraborty S; Mishra A; Choudhuri A; Bhaumik T; Sengupta R
    Nitric Oxide; 2024 Aug; 149():18-31. PubMed ID: 38823434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thioredoxin-mimetic peptides as catalysts of S-denitrosylation and anti-nitrosative stress agents.
    Kronenfeld G; Engelman R; Weisman-Shomer P; Atlas D; Benhar M
    Free Radic Biol Med; 2015 Feb; 79():138-46. PubMed ID: 25483557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a Thioredoxin-Trapping Mutant for Analysis of the Cellular Nitrosoproteome.
    Benhar M
    Methods Enzymol; 2017; 585():285-294. PubMed ID: 28109434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide is required for the auxin-induced activation of NADPH-dependent thioredoxin reductase and protein denitrosylation during root growth responses in arabidopsis.
    Correa-Aragunde N; Cejudo FJ; Lamattina L
    Ann Bot; 2015 Sep; 116(4):695-702. PubMed ID: 26229066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A substrate trapping approach identifies proteins regulated by reversible S-nitrosylation.
    Ben-Lulu S; Ziv T; Admon A; Weisman-Shomer P; Benhar M
    Mol Cell Proteomics; 2014 Oct; 13(10):2573-83. PubMed ID: 24973421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant effects of statins via S-nitrosylation and activation of thioredoxin in endothelial cells: a novel vasculoprotective function of statins.
    Haendeler J; Hoffmann J; Zeiher AM; Dimmeler S
    Circulation; 2004 Aug; 110(7):856-61. PubMed ID: 15289372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein denitrosylation: enzymatic mechanisms and cellular functions.
    Benhar M; Forrester MT; Stamler JS
    Nat Rev Mol Cell Biol; 2009 Oct; 10(10):721-32. PubMed ID: 19738628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.