BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 37652374)

  • 1. Early-life exposure to lead changes cardiac development and compromises long-term cardiac function.
    Liu Q; Xu C; Jin J; Li W; Liang J; Zhou S; Weng Z; Zhou Y; Liao X; Gu A
    Sci Total Environ; 2023 Dec; 904():166667. PubMed ID: 37652374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angiotensin II type-1 receptor activation in the adult heart causes blood pressure-independent hypertrophy and cardiac dysfunction.
    Ainscough JF; Drinkhill MJ; Sedo A; Turner NA; Brooke DA; Balmforth AJ; Ball SG
    Cardiovasc Res; 2009 Feb; 81(3):592-600. PubMed ID: 18703536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of phosphatase and tensin homolog-induced putative kinase 1/Parkin-mediated autophagy in angiotensin II-induced cardiac hypertrophy in C57BL/6 mice.
    Fan G; Chen MJ; Wei J
    J Int Med Res; 2020 May; 48(5):300060519896143. PubMed ID: 31889458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CIKS (Act1 or TRAF3IP2) mediates Angiotensin-II-induced Interleukin-18 expression, and Nox2-dependent cardiomyocyte hypertrophy.
    Valente AJ; Clark RA; Siddesha JM; Siebenlist U; Chandrasekar B
    J Mol Cell Cardiol; 2012 Jul; 53(1):113-24. PubMed ID: 22575763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone morphogenetic protein-4 mediates cardiac hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiac hypertrophy.
    Sun B; Huo R; Sheng Y; Li Y; Xie X; Chen C; Liu HB; Li N; Li CB; Guo WT; Zhu JX; Yang BF; Dong DL
    Hypertension; 2013 Feb; 61(2):352-60. PubMed ID: 23248151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of miR-142-3p improves mitochondrial function in cardiac hypertrophy.
    Liu BL; Cheng M; Hu S; Wang S; Wang L; Tu X; Huang CX; Jiang H; Wu G
    Biomed Pharmacother; 2018 Dec; 108():1347-1356. PubMed ID: 30372837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melatonin alleviates angiotensin-II-induced cardiac hypertrophy via activating MICU1 pathway.
    Yang Y; Du J; Xu R; Shen Y; Yang D; Li D; Hu H; Pei H; Yang Y
    Aging (Albany NY); 2020 Nov; 13(1):493-515. PubMed ID: 33259334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perinatal 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure sensitizes offspring to angiotensin II-induced hypertension.
    Aragon AC; Goens MB; Carbett E; Walker MK
    Cardiovasc Toxicol; 2008; 8(3):145-54. PubMed ID: 18670907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ANG II modulation of cardiac growth and remodeling in immature fetal sheep.
    Sandgren J; Scholz TD; Segar JL
    Am J Physiol Regul Integr Comp Physiol; 2015 Jun; 308(11):R965-72. PubMed ID: 25810382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scoparone alleviates Ang II-induced pathological myocardial hypertrophy in mice by inhibiting oxidative stress.
    Lyu L; Chen J; Wang W; Yan T; Lin J; Gao H; Li H; Lv R; Xu F; Fang L; Chen Y
    J Cell Mol Med; 2021 Mar; 25(6):3136-3148. PubMed ID: 33560596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The antifibrotic agent pirfenidone inhibits angiotensin II-induced cardiac hypertrophy in mice.
    Yamazaki T; Yamashita N; Izumi Y; Nakamura Y; Shiota M; Hanatani A; Shimada K; Muro T; Iwao H; Yoshiyama M
    Hypertens Res; 2012 Jan; 35(1):34-40. PubMed ID: 21866107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of osteopontin in cardiac fibrosis and remodeling in angiotensin II-induced cardiac hypertrophy.
    Matsui Y; Jia N; Okamoto H; Kon S; Onozuka H; Akino M; Liu L; Morimoto J; Rittling SR; Denhardt D; Kitabatake A; Uede T
    Hypertension; 2004 Jun; 43(6):1195-201. PubMed ID: 15123578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caloric restriction ameliorates angiotensin II-induced mitochondrial remodeling and cardiac hypertrophy.
    Finckenberg P; Eriksson O; Baumann M; Merasto S; Lalowski MM; Levijoki J; Haasio K; Kytö V; Muller DN; Luft FC; Oresic M; Mervaala E
    Hypertension; 2012 Jan; 59(1):76-84. PubMed ID: 22068868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between maternal and postnatal high fat diet leads to a greater risk of myocardial dysfunction in offspring via enhanced lipotoxicity, IRS-1 serine phosphorylation and mitochondrial defects.
    Turdi S; Ge W; Hu N; Bradley KM; Wang X; Ren J
    J Mol Cell Cardiol; 2013 Feb; 55():117-29. PubMed ID: 23266593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiotensin-(1-7) attenuates angiotensin II-induced cardiac hypertrophy via a Sirt3-dependent mechanism.
    Guo L; Yin A; Zhang Q; Zhong T; O'Rourke ST; Sun C
    Am J Physiol Heart Circ Physiol; 2017 May; 312(5):H980-H991. PubMed ID: 28411231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dapagliflozin attenuates myocardial hypertrophy via activating the SIRT1/HIF-1α signaling pathway.
    Yang J; Li L; Zheng X; Lu Z; Zhou H
    Biomed Pharmacother; 2023 Sep; 165():115125. PubMed ID: 37421782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Actions of AT
    Sparks MA; Rianto F; Diaz E; Revoori R; Hoang T; Bouknight L; Stegbauer J; Vivekanandan-Giri A; Ruiz P; Pennathur S; Abraham DM; Gurley SB; Crowley SD; Coffman TM
    Hypertension; 2021 Feb; 77(2):393-404. PubMed ID: 33390039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Downregulated endogenous sulfur dioxide/aspartate aminotransferase pathway is involved in angiotensin II-stimulated cardiomyocyte autophagy and myocardial hypertrophy in mice.
    Chen Q; Zhang L; Chen S; Huang Y; Li K; Yu X; Wu H; Tian X; Zhang C; Tang C; Du J; Jin H
    Int J Cardiol; 2016 Dec; 225():392-401. PubMed ID: 27770734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD38 promotes angiotensin II-induced cardiac hypertrophy.
    Guan XH; Hong X; Zhao N; Liu XH; Xiao YF; Chen TT; Deng LB; Wang XL; Wang JB; Ji GJ; Fu M; Deng KY; Xin HB
    J Cell Mol Med; 2017 Aug; 21(8):1492-1502. PubMed ID: 28296029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Klotho inhibits angiotensin II-induced cardiac hypertrophy, fibrosis, and dysfunction in mice through suppression of transforming growth factor-β1 signaling pathway.
    Ding J; Tang Q; Luo B; Zhang L; Lin L; Han L; Hao M; Li M; Yu L; Li M
    Eur J Pharmacol; 2019 Sep; 859():172549. PubMed ID: 31325434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.