These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37652840)

  • 1. Synapse organizers as molecular codes for synaptic plasticity.
    Connor SA; Siddiqui TJ
    Trends Neurosci; 2023 Nov; 46(11):971-985. PubMed ID: 37652840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of LRRTMs in synapse development and plasticity.
    Roppongi RT; Karimi B; Siddiqui TJ
    Neurosci Res; 2017 Mar; 116():18-28. PubMed ID: 27810425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging Roles of Synapse Organizers in the Regulation of Critical Periods.
    Ribic A; Biederer T
    Neural Plast; 2019; 2019():1538137. PubMed ID: 31565044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of the cell adhesion protein neuroligin-1 induces learning deficits and impairs synaptic plasticity by altering the ratio of excitation to inhibition in the hippocampus.
    Dahlhaus R; Hines RM; Eadie BD; Kannangara TS; Hines DJ; Brown CE; Christie BR; El-Husseini A
    Hippocampus; 2010 Feb; 20(2):305-22. PubMed ID: 19437420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lrfn2-Mutant Mice Display Suppressed Synaptic Plasticity and Inhibitory Synapse Development and Abnormal Social Communication and Startle Response.
    Li Y; Kim R; Cho YS; Song WS; Kim D; Kim K; Roh JD; Chung C; Park H; Yang E; Kim SJ; Ko J; Kim H; Kim MH; Bae YC; Kim E
    J Neurosci; 2018 Jun; 38(26):5872-5887. PubMed ID: 29798891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell adhesion and homeostatic synaptic plasticity.
    Thalhammer A; Cingolani LA
    Neuropharmacology; 2014 Mar; 78():23-30. PubMed ID: 23542441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of neural circuit formation by leucine-rich repeat proteins.
    de Wit J; Ghosh A
    Trends Neurosci; 2014 Oct; 37(10):539-50. PubMed ID: 25131359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPARCL1 Promotes Excitatory But Not Inhibitory Synapse Formation and Function Independent of Neurexins and Neuroligins.
    Gan KJ; Südhof TC
    J Neurosci; 2020 Oct; 40(42):8088-8102. PubMed ID: 32973045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glypicans and Heparan Sulfate in Synaptic Development, Neural Plasticity, and Neurological Disorders.
    Kamimura K; Maeda N
    Front Neural Circuits; 2021; 15():595596. PubMed ID: 33679334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synapse-to-Nucleus Signaling in Neurodegenerative and Neuropsychiatric Disorders.
    Parra-Damas A; Saura CA
    Biol Psychiatry; 2019 Jul; 86(2):87-96. PubMed ID: 30846302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental plasticity shapes synaptic phenotypes of autism-associated neuroligin-3 mutations in the calyx of Held.
    Zhang B; Seigneur E; Wei P; Gokce O; Morgan J; Südhof TC
    Mol Psychiatry; 2017 Oct; 22(10):1483-1491. PubMed ID: 27725662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards an Understanding of Synapse Formation.
    Südhof TC
    Neuron; 2018 Oct; 100(2):276-293. PubMed ID: 30359597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking Nanoscale Dynamics of AMPA Receptor Organization to Plasticity of Excitatory Synapses and Learning.
    Choquet D
    J Neurosci; 2018 Oct; 38(44):9318-9329. PubMed ID: 30381423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synapse formation: from cellular and molecular mechanisms to neurodevelopmental and neurodegenerative disorders.
    Batool S; Raza H; Zaidi J; Riaz S; Hasan S; Syed NI
    J Neurophysiol; 2019 Apr; 121(4):1381-1397. PubMed ID: 30759043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LAR-RPTPs: synaptic adhesion molecules that shape synapse development.
    Um JW; Ko J
    Trends Cell Biol; 2013 Oct; 23(10):465-75. PubMed ID: 23916315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SynCAMs extend their functions beyond the synapse.
    Frei JA; Stoeckli ET
    Eur J Neurosci; 2014 Jun; 39(11):1752-60. PubMed ID: 24628990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamate receptor plasticity at excitatory synapses in the brain.
    Genoux D; Montgomery JM
    Clin Exp Pharmacol Physiol; 2007 Oct; 34(10):1058-63. PubMed ID: 17714094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of homeostatic plasticity in the excitatory synapse.
    Fernandes D; Carvalho AL
    J Neurochem; 2016 Dec; 139(6):973-996. PubMed ID: 27241695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between autism-linked MDGAs and neuroligins suppresses inhibitory synapse development.
    Pettem KL; Yokomaku D; Takahashi H; Ge Y; Craig AM
    J Cell Biol; 2013 Feb; 200(3):321-36. PubMed ID: 23358245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EphBs and ephrin-Bs: Trans-synaptic organizers of synapse development and function.
    Henderson NT; Dalva MB
    Mol Cell Neurosci; 2018 Sep; 91():108-121. PubMed ID: 30031105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.