These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37652921)

  • 1. X-ray free electron laser observation of ultrafast lattice behaviour under femtosecond laser-driven shock compression in iron.
    Sano T; Matsuda T; Hirose A; Ohata M; Terai T; Kakeshita T; Inubushi Y; Sato T; Miyanishi K; Yabashi M; Togashi T; Tono K; Sakata O; Tange Y; Arakawa K; Ito Y; Okuchi T; Sato T; Sekine T; Mashimo T; Nakanii N; Seto Y; Shigeta M; Shobu T; Sano Y; Hosokai T; Matsuoka T; Yabuuchi T; Tanaka KA; Ozaki N; Kodama R
    Sci Rep; 2023 Aug; 13(1):13796. PubMed ID: 37652921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femtosecond X-Ray Diffraction Studies of the Reversal of the Microstructural Effects of Plastic Deformation during Shock Release of Tantalum.
    Sliwa M; McGonegle D; Wehrenberg C; Bolme CA; Heighway PG; Higginbotham A; Lazicki A; Lee HJ; Nagler B; Park HS; Rudd RE; Suggit MJ; Swift D; Tavella F; Zepeda-Ruiz L; Remington BA; Wark JS
    Phys Rev Lett; 2018 Jun; 120(26):265502. PubMed ID: 30004719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtosecond Visualization of hcp-Iron Strength and Plasticity under Shock Compression.
    Merkel S; Hok S; Bolme C; Rittman D; Ramos KJ; Morrow B; Lee HJ; Nagler B; Galtier E; Granados E; Hashim A; Mao WL; Gleason AE
    Phys Rev Lett; 2021 Nov; 127(20):205501. PubMed ID: 34860050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High pressure phase transition and strength estimate in polycrystalline alumina during laser-driven shock compression.
    Hari A; Hari R; Heighway PG; Smith RF; Duffy TS; Sims M; Singh S; Fratanduono DE; Bolme CA; Gleason AE; Coppari F; Lee HJ; Granados E; Heimann P; Eggert JH; Wicks JK
    J Phys Condens Matter; 2022 Dec; 35(9):. PubMed ID: 36575863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics.
    Wehrenberg CE; McGonegle D; Bolme C; Higginbotham A; Lazicki A; Lee HJ; Nagler B; Park HS; Remington BA; Rudd RE; Sliwa M; Suggit M; Swift D; Tavella F; Zepeda-Ruiz L; Wark JS
    Nature; 2017 Oct; 550(7677):496-499. PubMed ID: 29072261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtosecond visualization of lattice dynamics in shock-compressed matter.
    Milathianaki D; Boutet S; Williams GJ; Higginbotham A; Ratner D; Gleason AE; Messerschmidt M; Seibert MM; Swift DC; Hering P; Robinson J; White WE; Wark JS
    Science; 2013 Oct; 342(6155):220-3. PubMed ID: 24115435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subnanosecond phase transition dynamics in laser-shocked iron.
    Hwang H; Galtier E; Cynn H; Eom I; Chun SH; Bang Y; Hwang GC; Choi J; Kim T; Kong M; Kwon S; Kang K; Lee HJ; Park C; Lee JI; Lee Y; Yang W; Shim SH; Vogt T; Kim S; Park J; Kim S; Nam D; Lee JH; Hyun H; Kim M; Koo TY; Kao CC; Sekine T; Lee Y
    Sci Adv; 2020 Jun; 6(23):eaaz5132. PubMed ID: 32548258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interferometric analysis of laser-driven cylindrically focusing shock waves in a thin liquid layer.
    Veysset D; Мaznev AA; Pezeril T; Kooi S; Nelson KA
    Sci Rep; 2016 Dec; 6(1):24. PubMed ID: 28003659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of ultrafast phase transitions in MgF
    Mareev E; Potemkin F
    Sci Rep; 2022 Apr; 12(1):6621. PubMed ID: 35459247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast x-ray detection of low-spin iron in molten silicate under deep planetary interior conditions.
    Shim SH; Ko B; Sokaras D; Nagler B; Lee HJ; Galtier E; Glenzer S; Granados E; Vinci T; Fiquet G; Dolinschi J; Tappan J; Kulka B; Mao WL; Morard G; Ravasio A; Gleason A; Alonso-Mori R
    Sci Adv; 2023 Oct; 9(42):eadi6153. PubMed ID: 37862409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-Induced Stress-Driven Nanoplate Jumping Visualized by Ultrafast Electron Microscopy.
    Zhou Y; Meng Y; Luo G; Chen B; Zhong D; Hu Y
    ACS Nano; 2024 Jul; ():. PubMed ID: 39018251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Observation of Melting in Shock-Compressed Bismuth With Femtosecond X-ray Diffraction.
    Gorman MG; Briggs R; McBride EE; Higginbotham A; Arnold B; Eggert JH; Fratanduono DE; Galtier E; Lazicki AE; Lee HJ; Liermann HP; Nagler B; Rothkirch A; Smith RF; Swift DC; Collins GW; Wark JS; McMahon MI
    Phys Rev Lett; 2015 Aug; 115(9):095701. PubMed ID: 26371663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast Imaging of Laser Driven Shock Waves using Betatron X-rays from a Laser Wakefield Accelerator.
    Wood JC; Chapman DJ; Poder K; Lopes NC; Rutherford ME; White TG; Albert F; Behm KT; Booth N; Bryant JSJ; Foster PS; Glenzer S; Hill E; Krushelnick K; Najmudin Z; Pollock BB; Rose S; Schumaker W; Scott RHH; Sherlock M; Thomas AGR; Zhao Z; Eakins DE; Mangles SPD
    Sci Rep; 2018 Jul; 8(1):11010. PubMed ID: 30030516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic fracture of tantalum under extreme tensile stress.
    Albertazzi B; Ozaki N; Zhakhovsky V; Faenov A; Habara H; Harmand M; Hartley N; Ilnitsky D; Inogamov N; Inubushi Y; Ishikawa T; Katayama T; Koyama T; Koenig M; Krygier A; Matsuoka T; Matsuyama S; McBride E; Migdal KP; Morard G; Ohashi H; Okuchi T; Pikuz T; Purevjav N; Sakata O; Sano Y; Sato T; Sekine T; Seto Y; Takahashi K; Tanaka K; Tange Y; Togashi T; Tono K; Umeda Y; Vinci T; Yabashi M; Yabuuchi T; Yamauchi K; Yumoto H; Kodama R
    Sci Adv; 2017 Jun; 3(6):e1602705. PubMed ID: 28630909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The laser shock station in the dynamic compression sector. I.
    Wang X; Rigg P; Sethian J; Sinclair N; Weir N; Williams B; Zhang J; Hawreliak J; Toyoda Y; Gupta Y; Li Y; Broege D; Bromage J; Earley R; Guy D; Zuegel J
    Rev Sci Instrum; 2019 May; 90(5):053901. PubMed ID: 31153279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realizing Ultrafast Electron Pulse Self-Compression by Femtosecond Pulse Shaping Technique.
    Qi Y; Pei M; Qi D; Yang Y; Jia T; Zhang S; Sun Z
    J Phys Chem Lett; 2015 Oct; 6(19):3867-72. PubMed ID: 26722884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials.
    Matsubara E; Okada S; Ichitsubo T; Kawaguchi T; Hirata A; Guan PF; Tokuda K; Tanimura K; Matsunaga T; Chen MW; Yamada N
    Phys Rev Lett; 2016 Sep; 117(13):135501. PubMed ID: 27715090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal stability of a femtosecond hard-x-ray undulator source studied by control of coherent optical phonons.
    Beaud P; Johnson SL; Streun A; Abela R; Abramsohn D; Grolimund D; Krasniqi F; Schmidt T; Schlott V; Ingold G
    Phys Rev Lett; 2007 Oct; 99(17):174801. PubMed ID: 17995338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of shock-dynamics study with synchrotron-based time-resolved X-ray diffraction using an Nd:glass laser system.
    Takagi S; Ichiyanagi K; Kyono A; Nozawa S; Kawai N; Fukaya R; Funamori N; Adachi SI
    J Synchrotron Radiat; 2020 Mar; 27(Pt 2):371-377. PubMed ID: 32153275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.