These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37652932)

  • 61. Frequency comb generation in a resonantly pumped exciton-polariton microring resonator.
    Egorov OA; Skryabin DV
    Opt Express; 2018 Sep; 26(18):24003-24009. PubMed ID: 30184893
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Quantum dynamics simulations of the 2D spectroscopy for exciton polaritons.
    Mondal ME; Koessler ER; Provazza J; Vamivakas AN; Cundiff ST; Krauss TD; Huo P
    J Chem Phys; 2023 Sep; 159(9):. PubMed ID: 37655761
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Single vs double anti-crossing in the strong coupling between surface plasmons and molecular excitons.
    Tan WJ; Thomas PA; Luxmoore IJ; Barnes WL
    J Chem Phys; 2021 Jan; 154(2):024704. PubMed ID: 33445885
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Self-Hybridized Polaritonic Emission from Layered Perovskites.
    Anantharaman SB; Stevens CE; Lynch J; Song B; Hou J; Zhang H; Jo K; Kumar P; Blancon JC; Mohite AD; Hendrickson JR; Jariwala D
    Nano Lett; 2021 Jul; 21(14):6245-6252. PubMed ID: 34260259
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ultralow Threshold Polariton Condensate in a Monolayer Semiconductor Microcavity at Room Temperature.
    Zhao J; Su R; Fieramosca A; Zhao W; Du W; Liu X; Diederichs C; Sanvitto D; Liew TCH; Xiong Q
    Nano Lett; 2021 Apr; 21(7):3331-3339. PubMed ID: 33797259
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Plasmonic Crystals for Strong Light-Matter Coupling in Carbon Nanotubes.
    Zakharko Y; Graf A; Zaumseil J
    Nano Lett; 2016 Oct; 16(10):6504-6510. PubMed ID: 27661764
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Collective Strong Light-Matter Coupling in Hierarchical Microcavity-Plasmon-Exciton Systems.
    Bisht A; Cuadra J; Wersäll M; Canales A; Antosiewicz TJ; Shegai T
    Nano Lett; 2019 Jan; 19(1):189-196. PubMed ID: 30500202
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Strong coupling of hybrid states of light and matter in cavity-coupled quantum dot solids.
    Sangeetha A; Reivanth K; Thrupthika T; Ramya S; Nataraj D
    Sci Rep; 2023 Oct; 13(1):16662. PubMed ID: 37794042
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities.
    Graf A; Held M; Zakharko Y; Tropf L; Gather MC; Zaumseil J
    Nat Mater; 2017 Sep; 16(9):911-917. PubMed ID: 28714985
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Strongly enhanced light-matter coupling of monolayer WS
    Maggiolini E; Polimeno L; Todisco F; Di Renzo A; Han B; De Giorgi M; Ardizzone V; Schneider C; Mastria R; Cannavale A; Pugliese M; De Marco L; Rizzo A; Maiorano V; Gigli G; Gerace D; Sanvitto D; Ballarini D
    Nat Mater; 2023 Aug; 22(8):964-969. PubMed ID: 37217703
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A room-temperature polariton light-emitting diode based on monolayer WS
    Gu J; Chakraborty B; Khatoniar M; Menon VM
    Nat Nanotechnol; 2019 Nov; 14(11):1024-1028. PubMed ID: 31548689
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Exciton, Biexciton, and Hot Exciton Dynamics in CsPbBr
    Vale BRC; Socie E; Burgos-Caminal A; Bettini J; Schiavon MA; Moser JE
    J Phys Chem Lett; 2020 Jan; 11(2):387-394. PubMed ID: 31869228
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities.
    Graf A; Tropf L; Zakharko Y; Zaumseil J; Gather MC
    Nat Commun; 2016 Oct; 7():13078. PubMed ID: 27721454
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Enhanced Second-Order Nonlinearity for THz Generation by Resonant Interaction of Exciton-Polariton Rabi Oscillations with Optical Phonons.
    Rojan K; Léger Y; Morigi G; Richard M; Minguzzi A
    Phys Rev Lett; 2017 Sep; 119(12):127401. PubMed ID: 29341639
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ultrafast-nonlinear ultraviolet pulse modulation in an AlInGaN polariton waveguide operating up to room temperature.
    Di Paola DM; Walker PM; Emmanuele RPA; Yulin AV; Ciers J; Zaidi Z; Carlin JF; Grandjean N; Shelykh I; Skolnick MS; Butté R; Krizhanovskii DN
    Nat Commun; 2021 Jun; 12(1):3504. PubMed ID: 34108471
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Optical nonlinearity goes ultrafast in 2D semiconductor-based nanocavities.
    Genco A; Cerullo G
    Light Sci Appl; 2022 May; 11(1):127. PubMed ID: 35523774
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A single microwire near-infrared exciton-polariton light-emitting diode.
    Jiang M; Tang K; Wan P; Xu T; Xu H; Kan C
    Nanoscale; 2021 Jan; 13(3):1663-1672. PubMed ID: 33432956
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Experimental Verification of the Very Strong Coupling Regime in a GaAs Quantum Well Microcavity.
    Brodbeck S; De Liberato S; Amthor M; Klaas M; Kamp M; Worschech L; Schneider C; Höfling S
    Phys Rev Lett; 2017 Jul; 119(2):027401. PubMed ID: 28753330
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Addressing the Dark State Problem in Strongly Coupled Organic Exciton-Polariton Systems.
    Michail E; Rashidi K; Liu B; He G; Menon VM; Sfeir MY
    Nano Lett; 2024 Jan; 24(2):557-565. PubMed ID: 38179964
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Efficient Bosonic Condensation of Exciton Polaritons in an H-Aggregate Organic Single-Crystal Microcavity.
    Ren J; Liao Q; Huang H; Li Y; Gao T; Ma X; Schumacher S; Yao J; Bai S; Fu H
    Nano Lett; 2020 Oct; 20(10):7550-7557. PubMed ID: 32986448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.