These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 37653030)

  • 1. The stress-responsive protein REDD1 and its pathophysiological functions.
    Kim JY; Kwon YG; Kim YM
    Exp Mol Med; 2023 Sep; 55(9):1933-1944. PubMed ID: 37653030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulated in DNA damage and development 1 (REDD1) promotes cell survival during serum deprivation by sustaining repression of signaling through the mechanistic target of rapamycin in complex 1 (mTORC1).
    Dennis MD; McGhee NK; Jefferson LS; Kimball SR
    Cell Signal; 2013 Dec; 25(12):2709-16. PubMed ID: 24018049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced REDD1 expression contributes to activation of mTORC1 following electrically induced muscle contraction.
    Gordon BS; Steiner JL; Lang CH; Jefferson LS; Kimball SR
    Am J Physiol Endocrinol Metab; 2014 Oct; 307(8):E703-11. PubMed ID: 25159324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient-induced stimulation of protein synthesis in mouse skeletal muscle is limited by the mTORC1 repressor REDD1.
    Gordon BS; Williamson DL; Lang CH; Jefferson LS; Kimball SR
    J Nutr; 2015 Apr; 145(4):708-13. PubMed ID: 25716553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of REDD1 gene ameliorates sepsis-induced decrease in mTORC1 signaling but has divergent effects on proteolytic signaling in skeletal muscle.
    Steiner JL; Crowell KT; Kimball SR; Lang CH
    Am J Physiol Endocrinol Metab; 2015 Dec; 309(12):E981-94. PubMed ID: 26487002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is REDD1 a metabolic double agent? Lessons from physiology and pathology.
    Britto FA; Dumas K; Giorgetti-Peraldi S; Ollendorff V; Favier FB
    Am J Physiol Cell Physiol; 2020 Nov; 319(5):C807-C824. PubMed ID: 32877205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging role for regulated in development and DNA damage 1 (REDD1) in the regulation of skeletal muscle metabolism.
    Gordon BS; Steiner JL; Williamson DL; Lang CH; Kimball SR
    Am J Physiol Endocrinol Metab; 2016 Jul; 311(1):E157-74. PubMed ID: 27189933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mTORC1 dependent regulation of REDD1 protein stability.
    Tan CY; Hagen T
    PLoS One; 2013; 8(5):e63970. PubMed ID: 23717519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is REDD1 a Metabolic Éminence Grise?
    Lipina C; Hundal HS
    Trends Endocrinol Metab; 2016 Dec; 27(12):868-880. PubMed ID: 27613400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. REDD1 enhances protein phosphatase 2A-mediated dephosphorylation of Akt to repress mTORC1 signaling.
    Dennis MD; Coleman CS; Berg A; Jefferson LS; Kimball SR
    Sci Signal; 2014 Jul; 7(335):ra68. PubMed ID: 25056877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered nutrient response of mTORC1 as a result of changes in REDD1 expression: effect of obesity vs. REDD1 deficiency.
    Williamson DL; Li Z; Tuder RM; Feinstein E; Kimball SR; Dungan CM
    J Appl Physiol (1985); 2014 Aug; 117(3):246-56. PubMed ID: 24876363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of REDD1 attenuates oxygen glucose deprivation/reoxygenation-evoked ischemic injury in neuron by suppressing mTOR-mediated excessive autophagy.
    Sun J; Yue F
    J Cell Biochem; 2019 Sep; 120(9):14771-14779. PubMed ID: 31021470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feedback control of p53 translation by REDD1 and mTORC1 limits the p53-dependent DNA damage response.
    Vadysirisack DD; Baenke F; Ory B; Lei K; Ellisen LW
    Mol Cell Biol; 2011 Nov; 31(21):4356-65. PubMed ID: 21896779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATF4-Mediated Upregulation of REDD1 and Sestrin2 Suppresses mTORC1 Activity during Prolonged Leucine Deprivation.
    Xu D; Dai W; Kutzler L; Lacko HA; Jefferson LS; Dennis MD; Kimball SR
    J Nutr; 2020 May; 150(5):1022-1030. PubMed ID: 31875479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. REDD1/DDIT4-independent mTORC1 inhibition and apoptosis by glucocorticoids in thymocytes.
    Wolff NC; McKay RM; Brugarolas J
    Mol Cancer Res; 2014 Jun; 12(6):867-77. PubMed ID: 24615339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia-induced regulation of mTOR signaling by miR-7 targeting REDD1.
    Seong M; Lee J; Kang H
    J Cell Biochem; 2019 Mar; 120(3):4523-4532. PubMed ID: 30302791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulated in development and DNA damage 1 is necessary for hyperglycemia-induced vascular endothelial growth factor expression in the retina of diabetic rodents.
    Dennis MD; Kimball SR; Fort PE; Jefferson LS
    J Biol Chem; 2015 Feb; 290(6):3865-74. PubMed ID: 25548280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interleukin-6 influences stress-signalling by reducing the expression of the mTOR-inhibitor REDD1 in a STAT3-dependent manner.
    Pinno J; Bongartz H; Klepsch O; Wundrack N; Poli V; Schaper F; Dittrich A
    Cell Signal; 2016 Aug; 28(8):907-16. PubMed ID: 27094713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of hypoxia-inducible factor-1α, regulated in development and DNA damage response-1 and mammalian target of rapamycin in human placental BeWo cells under hypoxia.
    Zhou F; Guan LB; Yu P; Wang XD; Hu YY
    Placenta; 2016 Sep; 45():24-31. PubMed ID: 27577706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasma membrane translocation of REDD1 governed by GPCRs contributes to mTORC1 activation.
    Michel G; Matthes HW; Hachet-Haas M; El Baghdadi K; de Mey J; Pepperkok R; Simpson JC; Galzi JL; Lecat S
    J Cell Sci; 2014 Feb; 127(Pt 4):773-87. PubMed ID: 24338366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.