These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37653051)

  • 1. Atomically precise vacancy-assembled quantum antidots.
    Fang H; Mahalingam H; Li X; Han X; Qiu Z; Han Y; Noori K; Dulal D; Chen H; Lyu P; Yang T; Li J; Su C; Chen W; Cai Y; Neto AHC; Novoselov KS; Rodin A; Lu J
    Nat Nanotechnol; 2023 Dec; 18(12):1401-1408. PubMed ID: 37653051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periodic Arrays of Phosphorene Nanopores as Antidot Lattices with Tunable Properties.
    Cupo A; Masih Das P; Chien CC; Danda G; Kharche N; Tristant D; Drndić M; Meunier V
    ACS Nano; 2017 Jul; 11(7):7494-7507. PubMed ID: 28666086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ballistic Transport in Graphene Antidot Lattices.
    Sandner A; Preis T; Schell C; Giudici P; Watanabe K; Taniguchi T; Weiss D; Eroms J
    Nano Lett; 2015 Dec; 15(12):8402-6. PubMed ID: 26598218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic structures and magnetic properties of MoS2 nanostructures: atomic defects, nanoholes, nanodots and antidots.
    Zhou Y; Yang P; Zu H; Gao F; Zu X
    Phys Chem Chem Phys; 2013 Jul; 15(25):10385-94. PubMed ID: 23681313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localizing Fractional Quasiparticles on Graphene Quantum Hall Antidots.
    Mills SM; Averin DV; Du X
    Phys Rev Lett; 2020 Nov; 125(22):227701. PubMed ID: 33315430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmability of Co-antidot lattices of optimized geometry.
    Schneider T; Langer M; Alekhina J; Kowalska E; Oelschlägel A; Semisalova A; Neudert A; Lenz K; Potzger K; Kostylev MP; Fassbender J; Adeyeye AO; Lindner J; Bali R
    Sci Rep; 2017 Feb; 7():41157. PubMed ID: 28145463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum antidot formation and correlation to optical shift of gold nanoparticles embedded in MgO.
    Xu J; Moxom J; Overbury SH; White CW; Mills AP; Suzuki R
    Phys Rev Lett; 2002 Apr; 88(17):175502. PubMed ID: 12005767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confined Vacuum Resonances as Artificial Atoms with Tunable Lifetime.
    Rejali R; Farinacci L; Coffey D; Broekhoven R; Gobeil J; Blanter YM; Otte S
    ACS Nano; 2022 Jul; 16(7):11251-11258. PubMed ID: 35816615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coulomb oscillations in antidots in the integer and fractional quantum Hall regimes.
    Kou A; Marcus CM; Pfeiffer LN; West KW
    Phys Rev Lett; 2012 Jun; 108(25):256803. PubMed ID: 23004632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene antidot lattices: designed defects and spin qubits.
    Pedersen TG; Flindt C; Pedersen J; Mortensen NA; Jauho AP; Pedersen K
    Phys Rev Lett; 2008 Apr; 100(13):136804. PubMed ID: 18517984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsically Patterned Two-Dimensional Transition Metal Halides.
    Xiang F; Bisht N; Da B; Mohammed MSG; Neiss C; Görling A; Maier S
    ACS Nano; 2024 Jul; ():. PubMed ID: 39001861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universal rule on chirality-dependent bandgaps in graphene antidot lattices.
    Liu X; Zhang Z; Guo W
    Small; 2013 Apr; 9(8):1405-10. PubMed ID: 23530006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dirac model of electronic transport in graphene antidot barriers.
    Thomsen MR; Brun SJ; Pedersen TG
    J Phys Condens Matter; 2014 Aug; 26(33):335301. PubMed ID: 25071080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomically precise engineering of spin-orbit polarons in a kagome magnetic Weyl semimetal.
    Chen H; Xing Y; Tan H; Huang L; Zheng Q; Huang Z; Han X; Hu B; Ye Y; Li Y; Xiao Y; Lei H; Qiu X; Liu E; Yang H; Wang Z; Yan B; Gao HJ
    Nat Commun; 2024 Mar; 15(1):2301. PubMed ID: 38485746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable interaction-induced localization of surface electrons in antidot nanostructured Bi2Te3 thin films.
    Liu HC; Lu HZ; He HT; Li B; Liu SG; He QL; Wang G; Sou IK; Shen SQ; Wang J
    ACS Nano; 2014 Sep; 8(9):9616-21. PubMed ID: 25184364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of A Magnetic Field on the Transport and Noise Properties of a Graphene Ribbon with Antidots.
    Marconcini P; Macucci M
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33113892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Band structures and transport properties of zigzag graphene nanoribbons with antidot arrays.
    Zhang YT; Li QM; Li YC; Zhang YY; Zhai F
    J Phys Condens Matter; 2010 Aug; 22(31):315304. PubMed ID: 21399360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ratchet effect study in Si/SiGe heterostructures in the presence of asymmetrical antidots for different polarizations of microwaves.
    Bisotto I; Kannan ES; Portal JC; Brown D; Beck TJ; Krupko Y; Jalabert L; Fujita H; Hoshi Y; Shiraki Y; Saraya T
    Sci Technol Adv Mater; 2014 Aug; 15(4):045005. PubMed ID: 27877706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene based dots and antidots: a comparative study from first principles.
    Cui XY; Li L; Zheng RK; Liu ZW; Stampfl C; Ringer SP
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1251-5. PubMed ID: 23646613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upstream modes and antidots poison graphene quantum Hall effect.
    Moreau N; Brun B; Somanchi S; Watanabe K; Taniguchi T; Stampfer C; Hackens B
    Nat Commun; 2021 Jul; 12(1):4265. PubMed ID: 34253725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.