BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 37653590)

  • 41. The revolution of PDMS microfluidics in cellular biology.
    Banik S; Uchil A; Kalsang T; Chakrabarty S; Ali MA; Srisungsitthisunti P; Mahato KK; Surdo S; Mazumder N
    Crit Rev Biotechnol; 2023 May; 43(3):465-483. PubMed ID: 35410564
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Organoid technology in female reproductive biomedicine.
    Heidari-Khoei H; Esfandiari F; Hajari MA; Ghorbaninejad Z; Piryaei A; Baharvand H
    Reprod Biol Endocrinol; 2020 Jun; 18(1):64. PubMed ID: 32552764
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Three-Dimensional Microfluidic Platform with Neural Organoids: Model System for Unraveling Synapses.
    Mukherjee N; Nandi S; Ghosh S; Garg S; Ghosh S
    ACS Chem Neurosci; 2020 Jan; 11(2):101-102. PubMed ID: 31872998
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3D cell culture models and organ-on-a-chip: Meet separation science and mass spectrometry.
    Lin A; Sved Skottvoll F; Rayner S; Pedersen-Bjergaard S; Sullivan G; Krauss S; Ray Wilson S; Harrison S
    Electrophoresis; 2020 Jan; 41(1-2):56-64. PubMed ID: 31544246
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vascularized organoids on a chip: strategies for engineering organoids with functional vasculature.
    Zhang S; Wan Z; Kamm RD
    Lab Chip; 2021 Feb; 21(3):473-488. PubMed ID: 33480945
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recent advances and future applications of microfluidic live-cell microarrays.
    Rothbauer M; Wartmann D; Charwat V; Ertl P
    Biotechnol Adv; 2015 Nov; 33(6 Pt 1):948-61. PubMed ID: 26133396
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Human Brain Organoids-on-Chip: Advances, Challenges, and Perspectives for Preclinical Applications.
    Castiglione H; Vigneron PA; Baquerre C; Yates F; Rontard J; Honegger T
    Pharmaceutics; 2022 Oct; 14(11):. PubMed ID: 36365119
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications.
    Pires NM; Dong T; Hanke U; Hoivik N
    Sensors (Basel); 2014 Aug; 14(8):15458-79. PubMed ID: 25196161
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A solvent resistant lab-on-chip platform for radiochemistry applications.
    Rensch C; Lindner S; Salvamoser R; Leidner S; Böld C; Samper V; Taylor D; Baller M; Riese S; Bartenstein P; Wängler C; Wängler B
    Lab Chip; 2014 Jul; 14(14):2556-64. PubMed ID: 24879121
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neuronal circuits on a chip for biological network monitoring.
    Herreros P; Ballesteros-Esteban LM; Laguna MF; Leyva I; Sendiña-Nadal I; Holgado M
    Biotechnol J; 2021 Jul; 16(7):e2000355. PubMed ID: 33984186
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intestinal Models for Personalized Medicine: from Conventional Models to Microfluidic Primary Intestine-on-a-chip.
    Li XG; Chen MX; Zhao SQ; Wang XQ
    Stem Cell Rev Rep; 2022 Aug; 18(6):2137-2151. PubMed ID: 34181185
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Challenges and opportunities in micro/nanofluidic and lab-on-a-chip.
    Verma N; Pandya A
    Prog Mol Biol Transl Sci; 2022; 186(1):289-302. PubMed ID: 35033289
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lab-on-a-chip systems for cancer biomarker diagnosis.
    Özyurt C; Uludağ İ; İnce B; Sezgintürk MK
    J Pharm Biomed Anal; 2023 Mar; 226():115266. PubMed ID: 36706542
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid Prototyping of Multilayer Microphysiological Systems.
    Hosic S; Bindas AJ; Puzan ML; Lake W; Soucy JR; Zhou F; Koppes RA; Breault DT; Murthy SK; Koppes AN
    ACS Biomater Sci Eng; 2021 Jul; 7(7):2949-2963. PubMed ID: 34275297
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineering mechanobiology through organoids-on-chip: A strategy to boost therapeutics.
    Charelli LE; Ferreira JPD; Naveira-Cotta CP; Balbino TA
    J Tissue Eng Regen Med; 2021 Nov; 15(11):883-899. PubMed ID: 34339588
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A hybrid fluorescent nanofiber membrane integrated with microfluidic chips towards lung-on-a-chip applications.
    Kanabekova P; Dauletkanov B; Bekezhankyzy Z; Toktarkan S; Martin A; Pham TT; Kostas K; Kulsharova G
    Lab Chip; 2024 Jan; 24(2):224-233. PubMed ID: 38053518
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vascularized human brain organoid on-chip.
    Tan SY; Feng X; Cheng LKW; Wu AR
    Lab Chip; 2023 Jun; 23(12):2693-2709. PubMed ID: 37256563
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Advances in TEER measurements of biological barriers in microphysiological systems.
    Nazari H; Shrestha J; Naei VY; Bazaz SR; Sabbagh M; Thiery JP; Warkiani ME
    Biosens Bioelectron; 2023 Aug; 234():115355. PubMed ID: 37159988
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An On-Chip Method for Long-Term Growth and Real-Time Imaging of Brain Organoids.
    Karzbrun E; Tshuva RY; Reiner O
    Curr Protoc Cell Biol; 2018 Dec; 81(1):e62. PubMed ID: 30239150
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sensor integration into microfluidic systems: trends and challenges.
    Buttkewitz MA; Heuer C; Bahnemann J
    Curr Opin Biotechnol; 2023 Oct; 83():102978. PubMed ID: 37531802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.