These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37653614)

  • 41. Review of low-temperature plasma nitrogen fixation technology.
    Chen H; Yuan D; Wu A; Lin X; Li X
    Waste Dispos Sustain Energy; 2021; 3(3):201-217. PubMed ID: 34254053
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Atomically dispersed Au
    Wang X; Wang W; Qiao M; Wu G; Chen W; Yuan T; Xu Q; Chen M; Zhang Y; Wang X; Wang J; Ge J; Hong X; Li Y; Wu Y; Li Y
    Sci Bull (Beijing); 2018 Oct; 63(19):1246-1253. PubMed ID: 36658862
    [TBL] [Abstract][Full Text] [Related]  

  • 43. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully.
    Tang C; Qiao SZ
    Chem Soc Rev; 2019 Jun; 48(12):3166-3180. PubMed ID: 31107485
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transition-Metal-Free Barium Hydride Mediates Dinitrogen Fixation and Ammonia Synthesis.
    Guan Y; Liu C; Wang Q; Gao W; Hansen HA; Guo J; Vegge T; Chen P
    Angew Chem Int Ed Engl; 2022 Sep; 61(39):e202205805. PubMed ID: 35918291
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system.
    Hawtof R; Ghosh S; Guarr E; Xu C; Mohan Sankaran R; Renner JN
    Sci Adv; 2019 Jan; 5(1):eaat5778. PubMed ID: 30746439
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Progress in Mo/W-based electrocatalysts for nitrogen reduction to ammonia under ambient conditions.
    Zeng L; Qiao Z; Peng X; Liu Z; Li Z; Yang B; Lei L; Wu G; Hou Y
    Chem Commun (Camb); 2022 Feb; 58(13):2096-2111. PubMed ID: 35048091
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrochemical nitrogen reduction: recent progress and prospects.
    Chanda D; Xing R; Xu T; Liu Q; Luo Y; Liu S; Tufa RA; Dolla TH; Montini T; Sun X
    Chem Commun (Camb); 2021 Jul; 57(60):7335-7349. PubMed ID: 34235522
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The development of catalysts for electrochemical nitrogen reduction toward ammonia: theoretical and experimental advances.
    Cui Y; Sun C; Qu Y; Dai T; Zhou H; Wang Z; Jiang Q
    Chem Commun (Camb); 2022 Sep; 58(74):10290-10302. PubMed ID: 36043384
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide.
    Hirakawa H; Hashimoto M; Shiraishi Y; Hirai T
    J Am Chem Soc; 2017 Aug; 139(31):10929-10936. PubMed ID: 28712297
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Boosting Nitrogen Activation
    Liao W; Liu K; Wang J; Stefancu A; Chen Q; Wu K; Zhou Y; Li H; Mei L; Li M; Fu J; Miyauchi M; Cortés E; Liu M
    ACS Nano; 2023 Jan; 17(1):411-420. PubMed ID: 36524975
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ambient Ammonia Electrosynthesis: Current Status, Challenges, and Perspectives.
    Lv XW; Weng CC; Yuan ZY
    ChemSusChem; 2020 Jun; 13(12):3061-3078. PubMed ID: 32202392
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Life cycle assessment and techno-economic analysis of nitrogen recovery by ammonia air-stripping from wastewater treatment.
    Kar S; Singh R; Gurian PL; Hendricks A; Kohl P; McKelvey S; Spatari S
    Sci Total Environ; 2023 Jan; 857(Pt 3):159499. PubMed ID: 36257433
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasma-assisted catalytic formation of ammonia in N
    Ben Yaala M; Saeedi A; Scherrer DF; Moser L; Steiner R; Zutter M; Oberkofler M; De Temmerman G; Marot L; Meyer E
    Phys Chem Chem Phys; 2019 Jul; 21(30):16623-16633. PubMed ID: 31317167
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent advancement in the electrocatalytic synthesis of ammonia.
    Wen X; Guan J
    Nanoscale; 2020 Apr; 12(15):8065-8094. PubMed ID: 32253416
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxygen vacancies engineering in electrocatalysts nitrogen reduction reaction.
    Zhu H; Wang C; He Y; Pu Y; Li P; He L; Huang X; Tang W; Tang H
    Front Chem; 2022; 10():1039738. PubMed ID: 36311423
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Designing a Redox Heterojunction for Photocatalytic "Overall Nitrogen Fixation" under Mild Conditions.
    Xia P; Pan X; Jiang S; Yu J; He B; Ismail PM; Bai W; Yang J; Yang L; Zhang H; Cheng M; Li H; Zhang Q; Xiao C; Xie Y
    Adv Mater; 2022 Jul; 34(28):e2200563. PubMed ID: 35510590
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis.
    Sato K; Imamura K; Kawano Y; Miyahara SI; Yamamoto T; Matsumura S; Nagaoka K
    Chem Sci; 2017 Jan; 8(1):674-679. PubMed ID: 28451216
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High Efficiency Electrochemical Nitrogen Fixation Achieved with a Lower Pressure Reaction System by Changing the Chemical Equilibrium.
    Cheng H; Cui P; Wang F; Ding LX; Wang H
    Angew Chem Int Ed Engl; 2019 Oct; 58(43):15541-15547. PubMed ID: 31502747
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nitrogen Reduction Reaction to Ammonia on Transition Metal Carbide Catalysts.
    Ellingsson V; Iqbal A; Skúlason E; Abghoui Y
    ChemSusChem; 2023 Nov; 16(22):e202300947. PubMed ID: 37702376
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A ligand insertion mechanism for cooperative NH
    Snyder BER; Turkiewicz AB; Furukawa H; Paley MV; Velasquez EO; Dods MN; Long JR
    Nature; 2023 Jan; 613(7943):287-291. PubMed ID: 36631647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.