BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 37653936)

  • 21. "Omics" of maize stress response for sustainable food production: opportunities and challenges.
    Gong F; Yang L; Tai F; Hu X; Wang W
    OMICS; 2014 Dec; 18(12):714-32. PubMed ID: 25401749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene network modules associated with abiotic stress response in tolerant rice genotypes identified by transcriptome meta-analysis.
    Smita S; Katiyar A; Lenka SK; Dalal M; Kumar A; Mahtha SK; Yadav G; Chinnusamy V; Pandey DM; Bansal KC
    Funct Integr Genomics; 2020 Jan; 20(1):29-49. PubMed ID: 31286320
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glutaredoxin in Rice Growth, Development, and Stress Resistance: Mechanisms and Research Advances.
    Zhai R; Ye S; Ye J; Wu M; Zhu G; Yu F; Wang X; Feng Y; Zhang X
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069292
    [TBL] [Abstract][Full Text] [Related]  

  • 24. QTL and Candidate Genes: Techniques and Advancement in Abiotic Stress Resistance Breeding of Major Cereals.
    Raj SRG; Nadarajah K
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving drought tolerance in rice: Ensuring food security through multi-dimensional approaches.
    Khan MIR; Palakolanu SR; Chopra P; Rajurkar AB; Gupta R; Iqbal N; Maheshwari C
    Physiol Plant; 2021 Jun; 172(2):645-668. PubMed ID: 33006143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches.
    Sreenivasulu N; Sopory SK; Kavi Kishor PB
    Gene; 2007 Feb; 388(1-2):1-13. PubMed ID: 17134853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability.
    Phour M; Sindhu SS
    Planta; 2022 Sep; 256(5):85. PubMed ID: 36125564
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stress Tolerance Profiling of a Collection of Extant Salt-Tolerant Rice Varieties and Transgenic Plants Overexpressing Abiotic Stress Tolerance Genes.
    Kurotani K; Yamanaka K; Toda Y; Ogawa D; Tanaka M; Kozawa H; Nakamura H; Hakata M; Ichikawa H; Hattori T; Takeda S
    Plant Cell Physiol; 2015 Oct; 56(10):1867-76. PubMed ID: 26329877
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coping with inclement weather conditions due to high temperature and water deficit in rice: An insight from genetic and biochemical perspectives.
    Rabara RC; Msanne J; Basu S; Ferrer MC; Roychoudhury A
    Physiol Plant; 2021 Jun; 172(2):487-504. PubMed ID: 33179306
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SSR marker-based genetic diversity analysis and SNP haplotyping of genes associating abiotic and biotic stress tolerance, rice growth and development and yield across 93 rice landraces.
    Vasumathy SK; Alagu M
    Mol Biol Rep; 2021 Aug; 48(8):5943-5953. PubMed ID: 34319545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of major candidate genes for multiple abiotic stress tolerance at seedling stage by network analysis and their validation by expression profiling in rice (
    Ramkumar MK; Mulani E; Jadon V; Sureshkumar V; Krishnan SG; Senthil Kumar S; Raveendran M; Singh AK; Solanke AU; Singh NK; Sevanthi AM
    3 Biotech; 2022 Jun; 12(6):127. PubMed ID: 35573803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fantastic genes: where and how to find them? Exploiting rice genetic resources for the improvement of yield, tolerance, and resistance to a wide array of stresses in rice.
    Reyes VP
    Funct Integr Genomics; 2023 Jul; 23(3):238. PubMed ID: 37439874
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Marker-assisted backcrossing: a useful method for rice improvement.
    Hasan MM; Rafii MY; Ismail MR; Mahmood M; Rahim HA; Alam MA; Ashkani S; Malek MA; Latif MA
    Biotechnol Biotechnol Equip; 2015 Mar; 29(2):237-254. PubMed ID: 26019637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomics-based precision breeding approaches to improve drought tolerance in rice.
    Swamy BP; Kumar A
    Biotechnol Adv; 2013 Dec; 31(8):1308-18. PubMed ID: 23702083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flooding Tolerance of Rice: Regulatory Pathways and Adaptive Mechanisms.
    Wang J; Han M; Huang Y; Zhao J; Liu C; Ma Y
    Plants (Basel); 2024 Apr; 13(9):. PubMed ID: 38732393
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteomics for abiotic stresses in legumes: present status and future directions.
    Jan N; Rather AM; John R; Chaturvedi P; Ghatak A; Weckwerth W; Zargar SM; Mir RA; Khan MA; Mir RR
    Crit Rev Biotechnol; 2023 Mar; 43(2):171-190. PubMed ID: 35109728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.
    Kujur A; Saxena MS; Bajaj D; Laxmi ; Parida SK
    J Biosci; 2013 Dec; 38(5):971-87. PubMed ID: 24296899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing.
    Zafar SA; Zaidi SS; Gaba Y; Singla-Pareek SL; Dhankher OP; Li X; Mansoor S; Pareek A
    J Exp Bot; 2020 Jan; 71(2):470-479. PubMed ID: 31644801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reproductive-Stage Heat Stress in Cereals: Impact, Plant Responses and Strategies for Tolerance Improvement.
    Zenda T; Wang N; Dong A; Zhou Y; Duan H
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35805930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Narrowing down the targets for yield improvement in rice under normal and abiotic stress conditions via expression profiling of yield-related genes.
    Tripathi AK; Pareek A; Sopory SK; Singla-Pareek SL
    Rice (N Y); 2012 Dec; 5(1):37. PubMed ID: 24280046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.