BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37654015)

  • 1. Improving the accuracy of automated gout flare ascertainment using natural language processing of electronic health records and linked Medicare claims data.
    Yoshida K; Cai T; Bessette LG; Kim E; Lee SB; Zabotka LE; Sun A; Mastrorilli JM; Oduol TA; Liu J; Solomon DH; Kim SC; Desai RJ; Liao KP
    Pharmacoepidemiol Drug Saf; 2024 Jan; 33(1):e5684. PubMed ID: 37654015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using natural language processing and machine learning to identify gout flares from electronic clinical notes.
    Zheng C; Rashid N; Wu YL; Koblick R; Lin AT; Levy GD; Cheetham TC
    Arthritis Care Res (Hoboken); 2014 Nov; 66(11):1740-8. PubMed ID: 24664671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of claims-based algorithms for gout flares.
    MacFarlane LA; Liu CC; Solomon DH; Kim SC
    Pharmacoepidemiol Drug Saf; 2016 Jul; 25(7):820-6. PubMed ID: 27230083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Gout Flares in Chief Complaint Text Using Natural Language Processing.
    Osborne JD; Booth JS; O'Leary T; Mudano A; Rosas G; Foster PJ; Saag KG; Danila MI
    AMIA Annu Symp Proc; 2020; 2020():973-982. PubMed ID: 33936473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using natural language processing to identify opioid use disorder in electronic health record data.
    Singleton J; Li C; Akpunonu PD; Abner EL; Kucharska-Newton AM
    Int J Med Inform; 2023 Feb; 170():104963. PubMed ID: 36521420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leveraging Natural Language Processing to Improve Electronic Health Record Suicide Risk Prediction for Veterans Health Administration Users.
    Levis M; Levy J; Dent KR; Dufort V; Gobbel GT; Watts BV; Shiner B
    J Clin Psychiatry; 2023 Jun; 84(4):. PubMed ID: 37341477
    [No Abstract]   [Full Text] [Related]  

  • 7. Scalable Feature Engineering from Electronic Free Text Notes to Supplement Confounding Adjustment of Claims-Based Pharmacoepidemiologic Studies.
    Wyss R; Plasek JM; Zhou L; Bessette LG; Schneeweiss S; Rassen JA; Tsacogianis T; Lin KJ
    Clin Pharmacol Ther; 2023 Apr; 113(4):832-838. PubMed ID: 36528788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural language processing to identify lupus nephritis phenotype in electronic health records.
    Deng Y; Pacheco JA; Ghosh A; Chung A; Mao C; Smith JC; Zhao J; Wei WQ; Barnado A; Dorn C; Weng C; Liu C; Cordon A; Yu J; Tedla Y; Kho A; Ramsey-Goldman R; Walunas T; Luo Y
    BMC Med Inform Decis Mak; 2024 Mar; 22(Suppl 2):348. PubMed ID: 38433189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patient and clinical characteristics associated with gout flares in an integrated healthcare system.
    Rashid N; Levy GD; Wu YL; Zheng C; Koblick R; Cheetham TC
    Rheumatol Int; 2015 Nov; 35(11):1799-807. PubMed ID: 25991397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cohort study investigating gout flares and management in UK general practice.
    Finnikin S; Mallen CD; Roddy E
    BMC Prim Care; 2023 Nov; 24(1):246. PubMed ID: 37993770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mining peripheral arterial disease cases from narrative clinical notes using natural language processing.
    Afzal N; Sohn S; Abram S; Scott CG; Chaudhry R; Liu H; Kullo IJ; Arruda-Olson AM
    J Vasc Surg; 2017 Jun; 65(6):1753-1761. PubMed ID: 28189359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural language processing of clinical notes for identification of critical limb ischemia.
    Afzal N; Mallipeddi VP; Sohn S; Liu H; Chaudhry R; Scott CG; Kullo IJ; Arruda-Olson AM
    Int J Med Inform; 2018 Mar; 111():83-89. PubMed ID: 29425639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a natural language processing algorithm to detect chronic cough in electronic health records.
    Bali V; Weaver J; Turzhitsky V; Schelfhout J; Paudel ML; Hulbert E; Peterson-Brandt J; Currie AG; Bakka D
    BMC Pulm Med; 2022 Jun; 22(1):256. PubMed ID: 35764999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmented intelligence with natural language processing applied to electronic health records for identifying patients with non-alcoholic fatty liver disease at risk for disease progression.
    Van Vleck TT; Chan L; Coca SG; Craven CK; Do R; Ellis SB; Kannry JL; Loos RJF; Bonis PA; Cho J; Nadkarni GN
    Int J Med Inform; 2019 Sep; 129():334-341. PubMed ID: 31445275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Clinical Notes and Natural Language Processing for Automated HIV Risk Assessment.
    Feller DJ; Zucker J; Yin MT; Gordon P; Elhadad N
    J Acquir Immune Defic Syndr; 2018 Feb; 77(2):160-166. PubMed ID: 29084046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Value of Unstructured Electronic Health Record Data in Geriatric Syndrome Case Identification.
    Kharrazi H; Anzaldi LJ; Hernandez L; Davison A; Boyd CM; Leff B; Kimura J; Weiner JP
    J Am Geriatr Soc; 2018 Aug; 66(8):1499-1507. PubMed ID: 29972595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebrovascular disease case identification in inpatient electronic medical record data using natural language processing.
    Pan J; Zhang Z; Peters SR; Vatanpour S; Walker RL; Lee S; Martin EA; Quan H
    Brain Inform; 2023 Sep; 10(1):22. PubMed ID: 37658963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Evaluation of a Natural Language Processing Annotation Tool to Facilitate Phenotyping of Cognitive Status in Electronic Health Records: Diagnostic Study.
    Noori A; Magdamo C; Liu X; Tyagi T; Li Z; Kondepudi A; Alabsi H; Rudmann E; Wilcox D; Brenner L; Robbins GK; Moura L; Zafar S; Benson NM; Hsu J; R Dickson J; Serrano-Pozo A; Hyman BT; Blacker D; Westover MB; Mukerji SS; Das S
    J Med Internet Res; 2022 Aug; 24(8):e40384. PubMed ID: 36040790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural language processing to identify social determinants of health in Alzheimer's disease and related dementia from electronic health records.
    Wu W; Holkeboer KJ; Kolawole TO; Carbone L; Mahmoudi E
    Health Serv Res; 2023 Dec; 58(6):1292-1302. PubMed ID: 37534741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of Prediction Models for Critical Care Outcomes Using Natural Language Processing of Electronic Health Record Data.
    Marafino BJ; Park M; Davies JM; Thombley R; Luft HS; Sing DC; Kazi DS; DeJong C; Boscardin WJ; Dean ML; Dudley RA
    JAMA Netw Open; 2018 Dec; 1(8):e185097. PubMed ID: 30646310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.