These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37654053)

  • 1. Surface-Enhanced Raman Spectroscopy (SERS) Activity of Gold Nanoparticles Prepared Using an Automated Loop Flow Reactor.
    Ma H; Zhang S; Yuan G; Liu Y; Cao X; Kong X; Wang Y
    Appl Spectrosc; 2023 Oct; 77(10):1163-1172. PubMed ID: 37654053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved surface enhanced Raman spectroscopic method using a paper-based grape skin-gold nanoparticles/graphene oxide substrate for detection of rhodamine 6G in water and food.
    Sridhar K; Inbaraj BS; Chen BH
    Chemosphere; 2022 Aug; 301():134702. PubMed ID: 35472615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of monolayer AuNPs decorated on an optical fiber facet for SERS analysis.
    Gu C; Zhao Z; Shi P
    Appl Opt; 2021 Jan; 60(3):792-798. PubMed ID: 33690453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Synthesis of Ultra-Uniform Gold Spherical Nanoparticles with Different Sizes and Their SERS Effects Study].
    Jiang SW; Li X; Zhang YJ; Zhu GS; Li JF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jan; 36(1):99-103. PubMed ID: 27228749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creating SERS hot spots on MoS(2) nanosheets with in situ grown gold nanoparticles.
    Su S; Zhang C; Yuwen L; Chao J; Zuo X; Liu X; Song C; Fan C; Wang L
    ACS Appl Mater Interfaces; 2014; 6(21):18735-41. PubMed ID: 25310705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Au Nanoparticles Deposited on Magnetic Carbon Nanofibers as the Ultrahigh Sensitive Substrate for Surface-Enhanced Raman Scattering: Detections of Rhodamine 6G and Aromatic Amino Acids.
    Wu HC; Chen TC; Tsai HJ; Chen CS
    Langmuir; 2018 Nov; 34(47):14158-14168. PubMed ID: 30380878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Nanohybrid Substrates with Layer-by-Layer Self-Assembling Properties to High-Sensitivity Surface-Enhanced Raman Scattering Detection.
    Chen YF; Lee YC; Lin WW; Lu MC; Yang YC; Chiu CW
    ACS Omega; 2024 Jan; 9(1):1894-1903. PubMed ID: 38222643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ReS
    Li Y; Liao H; Wu S; Weng X; Wang Y; Liu L; Qu J; Song J; Ye S; Yu X; Chen Y
    Molecules; 2023 May; 28(11):. PubMed ID: 37298764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of gold nanoparticles using chloroplasts.
    Zhang YX; Zheng J; Gao G; Kong YF; Zhi X; Wang K; Zhang XQ; Cui DX
    Int J Nanomedicine; 2011; 6():2899-906. PubMed ID: 22162651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodamine 6G conjugated to gold nanoparticles as labels for both SERS and fluorescence
studies on live endothelial cells.
    Jaworska A; Wojcik T; Malek K; Kwolek U; Kepczynski M; Ansary AA; Chlopicki S; Baranska M
    Mikrochim Acta; 2015; 182(1):119-127. PubMed ID: 25568498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional nanoporous gold/gold nanoparticles substrate for surface-enhanced Raman scattering detection of illegal additives in food.
    Zhang Y; Wang H; Ni C; Wang Q; Lin T
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Dec; 323():124879. PubMed ID: 39067360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars.
    Su Q; Ma X; Dong J; Jiang C; Qian W
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1873-9. PubMed ID: 21528839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional hotspot structures constructed from nanoporous gold with a V-cavity and gold nanoparticles for surface-enhanced Raman scattering.
    Xu Y; Wu Y; Wei J; Zhao Y; Xue P
    Anal Methods; 2024 May; 16(18):2888-2896. PubMed ID: 38646710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile synthesis of silver/gold alloy nanoparticles for ultra-sensitive rhodamine B detection.
    Ha Pham TT; Dien ND; Vu XH
    RSC Adv; 2021 Jun; 11(35):21475-21488. PubMed ID: 35478817
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Benedec D; Oniga I; Cuibus F; Sevastre B; Stiufiuc G; Duma M; Hanganu D; Iacovita C; Stiufiuc R; Lucaciu CM
    Int J Nanomedicine; 2018; 13():1041-1058. PubMed ID: 29503540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Gold Nanoparticle-Based SERS Substrates on TiO
    Breuch R; Klein D; Moers C; Siefke E; Wickleder C; Kaul P
    Nanomaterials (Basel); 2022 Mar; 12(5):. PubMed ID: 35269348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold Nanoparticles with Different Particle Sizes for the Quantitative Determination of Chlorpyrifos Residues in Soil by SERS.
    He Y; Xiao S; Dong T; Nie P
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31185580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophobic Paper-Based SERS Sensor Using Gold Nanoparticles Arranged on Graphene Oxide Flakes.
    Lee DJ; Kim DY
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates.
    Zhong LB; Yin J; Zheng YM; Liu Q; Cheng XX; Luo FH
    Anal Chem; 2014 Jul; 86(13):6262-7. PubMed ID: 24873535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AuNPs@mesoSiO2 composites for SERS detection of DTNB molecule.
    Lin CC; Chang CW
    Biosens Bioelectron; 2014 Jan; 51():297-303. PubMed ID: 23978453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.