These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 37654584)

  • 1. New Opportunities of Electrochemistry for Monitoring, Modulating, and Mimicking the Brain Signals.
    Wu F; Yu P; Mao L
    JACS Au; 2023 Aug; 3(8):2062-2072. PubMed ID: 37654584
    [No Abstract]   [Full Text] [Related]  

  • 2. Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems.
    Wolfrum B; Kätelhön E; Yakushenko A; Krause KJ; Adly N; Hüske M; Rinklin P
    Acc Chem Res; 2016 Sep; 49(9):2031-40. PubMed ID: 27602780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain neurochemical monitoring.
    Zhang Y; Jiang N; Yetisen AK
    Biosens Bioelectron; 2021 Oct; 189():113351. PubMed ID: 34049083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time Tracking of Electrical Signals and an Accurate Quantification of Chemical Signals with Long-Term Stability in the Live Brain.
    Liu Y; Liu Z; Tian Y
    Acc Chem Res; 2022 Oct; 55(19):2821-2832. PubMed ID: 36074539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Carbon-Fiber-Powered Microsensor for In Vivo Neurochemical Sensing with High Neuronal Compatibility.
    Yu P; Wei H; Zhong P; Xue Y; Wu F; Liu Y; Fei J; Mao L
    Angew Chem Int Ed Engl; 2020 Dec; 59(50):22652-22658. PubMed ID: 32869491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of Electrochemically Synthesized Resistive Switching Devices: Memory Storage, Neuromorphic Computing, and Sensing Applications.
    Kundale SS; Kamble GU; Patil PP; Patil SL; Rokade KA; Khot AC; Nirmal KA; Kamat RK; Kim KH; An HM; Dongale TD; Kim TG
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges and strategies faced in the electrochemical biosensing analysis of neurochemicals in vivo: A review.
    Chen J; Ding X; Zhang D
    Talanta; 2024 Jan; 266(Pt 1):124933. PubMed ID: 37506520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implantable Electrochemical Sensors for Brain Research.
    Liu Y; Liu Z; Zhou Y; Tian Y
    JACS Au; 2023 Jun; 3(6):1572-1582. PubMed ID: 37388703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic biofuel cells: 30 years of critical advancements.
    Rasmussen M; Abdellaoui S; Minteer SD
    Biosens Bioelectron; 2016 Feb; 76():91-102. PubMed ID: 26163747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing Recognition Molecules and Tailoring Functional Surfaces for In Vivo Monitoring of Small Molecules in the Brain.
    Zhang L; Tian Y
    Acc Chem Res; 2018 Mar; 51(3):688-696. PubMed ID: 29485847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors.
    Reddy YVM; Shin JH; Palakollu VN; Sravani B; Choi CH; Park K; Kim SK; Madhavi G; Park JP; Shetti NP
    Adv Colloid Interface Sci; 2022 Jun; 304():102664. PubMed ID: 35413509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-Organic Framework Materials for Electrochemical Supercapacitors.
    Cao Z; Momen R; Tao S; Xiong D; Song Z; Xiao X; Deng W; Hou H; Yasar S; Altin S; Bulut F; Zou G; Ji X
    Nanomicro Lett; 2022 Sep; 14(1):181. PubMed ID: 36050520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Electrochemical Bioelectronics: The Rise of In Situ Bioanalysis.
    Yu Y; Nyein HYY; Gao W; Javey A
    Adv Mater; 2020 Apr; 32(15):e1902083. PubMed ID: 31432573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bipolar Electrochemical Stimulation Using Conducting Polymers for Wireless Electroceuticals and Future Directions.
    Qin C; Yue Z; Wallace GG; Chen J
    ACS Appl Bio Mater; 2022 Nov; 5(11):5041-5056. PubMed ID: 36260917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introducing Nanoscale Electrochemistry in Small-Molecule Detection for Tackling Existing Limitations of Affinity-Based Label-Free Biosensing Applications.
    Lee DH; Lee WY; Kim J
    J Am Chem Soc; 2023 Aug; 145(32):17767-17778. PubMed ID: 37527497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinvigorating electrochemistry education.
    Kempler PA; Boettcher SW; Ardo S
    iScience; 2021 May; 24(5):102481. PubMed ID: 34027325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic electrochemical transistor arrays for real-time mapping of evoked neurotransmitter release in vivo.
    Xie K; Wang N; Lin X; Wang Z; Zhao X; Fang P; Yue H; Kim J; Luo J; Cui S; Yan F; Shi P
    Elife; 2020 Feb; 9():. PubMed ID: 32043970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Filamentary switching: synaptic plasticity through device volatility.
    La Barbera S; Vuillaume D; Alibart F
    ACS Nano; 2015 Jan; 9(1):941-9. PubMed ID: 25581249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical glucose sensors in diabetes management: an updated review (2010-2020).
    Teymourian H; Barfidokht A; Wang J
    Chem Soc Rev; 2020 Nov; 49(21):7671-7709. PubMed ID: 33020790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical and Quantitative in Vivo Monitoring of Brain Neurochemistry by Electrochemical and Imaging Approaches.
    Wu F; Yu P; Mao L
    ACS Omega; 2018 Oct; 3(10):13267-13274. PubMed ID: 30411032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.