These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 37655219)
1. Incorporating the pedigree information in multi-environment trial analyses for improving common vetch. Munoz Santa I; Nagel S; Taylor JD Front Plant Sci; 2023; 14():1166133. PubMed ID: 37655219 [TBL] [Abstract][Full Text] [Related]
2. Global adaptation patterns of Australian and CIMMYT spring bread wheat. Mathews KL; Chapman SC; Trethowan R; Pfeiffer W; van Ginkel M; Crossa J; Payne T; Delacy I; Fox PN; Cooper M Theor Appl Genet; 2007 Oct; 115(6):819-35. PubMed ID: 17768603 [TBL] [Abstract][Full Text] [Related]
3. [Effects of water supply on biomass yield, root/shoot ratio and water use efficiency of forage crops in intercropping systems]. Liu YN; Lai XF; Yang Q; Wang ZK Ying Yong Sheng Tai Xue Bao; 2020 Jan; 31(1):113-121. PubMed ID: 31957387 [TBL] [Abstract][Full Text] [Related]
4. Yield and nutrient composition of forage crops and their effects on soil characteristics of winter fallow paddy in South China. Xu L; Tang G; Wu D; Zhang J Front Plant Sci; 2023; 14():1292114. PubMed ID: 38293627 [TBL] [Abstract][Full Text] [Related]
5. Analysis of yield and oil from a series of canola breeding trials. Part I. Fitting factor analytic mixed models with pedigree information. Beeck CP; Cowling WA; Smith AB; Cullis BR Genome; 2010 Nov; 53(11):992-1001. PubMed ID: 21076515 [TBL] [Abstract][Full Text] [Related]
6. Factor analytic and reduced animal models for the investigation of additive genotype-by-environment interaction in outcrossing plant species with application to a Pinus radiata breeding programme. Cullis BR; Jefferson P; Thompson R; Smith AB Theor Appl Genet; 2014 Oct; 127(10):2193-210. PubMed ID: 25145447 [TBL] [Abstract][Full Text] [Related]
7. Multi-environment analysis of sorghum breeding trials using additive and dominance genomic relationships. Hunt CH; Hayes BJ; van Eeuwijk FA; Mace ES; Jordan DR Theor Appl Genet; 2020 Mar; 133(3):1009-1018. PubMed ID: 31907563 [TBL] [Abstract][Full Text] [Related]
8. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials. Dias KODG; Gezan SA; Guimarães CT; Nazarian A; da Costa E Silva L; Parentoni SN; de Oliveira Guimarães PE; de Oliveira Anoni C; Pádua JMV; de Oliveira Pinto M; Noda RW; Ribeiro CAG; de Magalhães JV; Garcia AAF; de Souza JC; Guimarães LJM; Pastina MM Heredity (Edinb); 2018 Jul; 121(1):24-37. PubMed ID: 29472694 [TBL] [Abstract][Full Text] [Related]
9. Designing Novel Strategies for Improving Old Legumes: An Overview from Common Vetch. Ramírez-Parra E; De la Rosa L Plants (Basel); 2023 Mar; 12(6):. PubMed ID: 36986962 [TBL] [Abstract][Full Text] [Related]
10. Impact of depth of pedigree and inclusion of historical data on the estimation of additive variance and breeding values in a sugarcane breeding program. Atkin FC; Dieters MJ; Stringer JK Theor Appl Genet; 2009 Aug; 119(3):555-65. PubMed ID: 19597798 [TBL] [Abstract][Full Text] [Related]
11. Potential of Legume-Brassica Intercrops for Forage Production and Green Manure: Encouragements from a Temperate Southeast European Environment. Jeromela AM; Mikić AM; Vujić S; Ćupina B; Krstić Đ; Dimitrijević A; Vasiljević S; Mihailović V; Cvejić S; Miladinović D Front Plant Sci; 2017; 8():312. PubMed ID: 28326095 [TBL] [Abstract][Full Text] [Related]
12. Application of factor analytic and spatial mixed models for the analysis of multi-environment trials in common bean (Phaseolus vulgaris L.) in Ethiopia. Argaw T; Fenta BA; Assefa E PLoS One; 2024; 19(4):e0301534. PubMed ID: 38636946 [TBL] [Abstract][Full Text] [Related]
13. Molecular bases for drought tolerance in common vetch: designing new molecular breeding tools. De la Rosa L; Zambrana E; Ramirez-Parra E BMC Plant Biol; 2020 Feb; 20(1):71. PubMed ID: 32054459 [TBL] [Abstract][Full Text] [Related]
14. Factor analytic mixed models for the provision of grower information from national crop variety testing programs. Smith AB; Ganesalingam A; Kuchel H; Cullis BR Theor Appl Genet; 2015 Jan; 128(1):55-72. PubMed ID: 25326722 [TBL] [Abstract][Full Text] [Related]
15. Effects of cultivar and growing degree day accumulations on forage partitioning and nutritive value of common vetch (Vicia sativa L.) on the Tibetan plateau. Huang Y; Zhang Z; Nan Z; Unkovich M; Coulter JA J Sci Food Agric; 2021 Jul; 101(9):3749-3757. PubMed ID: 33301171 [TBL] [Abstract][Full Text] [Related]
16. Effect of winter cover crops on soil nitrogen availability, corn yield, and nitrate leaching. Kuo S; Huang B; Bembenek R ScientificWorldJournal; 2001 Oct; 1 Suppl 2():22-9. PubMed ID: 12805863 [TBL] [Abstract][Full Text] [Related]
17. The effects of replacement of whole-plant corn with oat and common vetch on the fermentation quality, chemical composition and aerobic stability of total mixed ration silage in Tibet. Chen L; Guo G; Yu C; Zhang J; Shimojo M; Shao T Anim Sci J; 2015 Jan; 86(1):69-76. PubMed ID: 25091371 [TBL] [Abstract][Full Text] [Related]
19. Common vetch varietal differences in hay nutritive value, ruminal fermentation, nutrient digestibility and performance of fattening lambs. Huang YF; Matthew C; Li F; Nan ZB Animal; 2021 Jul; 15(7):100244. PubMed ID: 34175575 [TBL] [Abstract][Full Text] [Related]
20. Study on the relationships between the accumulation and translocation of dry matter and nitrogen and flower/pod development into seeds and seed yields in Chinese milk vetch. Zheng C; Liu C; Li C; Liu C; Nie L; Shi P; Zhang J; Lv Y; Li J; Cao W PLoS One; 2023; 18(3):e0278832. PubMed ID: 36952547 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]