These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37655308)

  • 1. A Variational Multiscale method with immersed boundary conditions for incompressible flows.
    Kang S; Masud A
    Meccanica; 2021 Jun; 56(6):1397-1422. PubMed ID: 37655308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weakly imposed boundary conditions for shear-rate dependent non-Newtonian fluids: application to cardiovascular flows.
    Kang S; Nashar S; Livingston ER; Masud A
    Math Biosci Eng; 2021 May; 18(4):3855-3886. PubMed ID: 34198415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variational coupling of non-matching discretizations across finitely deforming fluid-structure interfaces.
    Kang S; Kwack J; Masud A
    Int J Numer Methods Fluids; 2022 Jun; 94(6):678-718. PubMed ID: 37736534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.
    Ge L; Sotiropoulos F
    J Comput Phys; 2007 Aug; 225(2):1782-1809. PubMed ID: 19194533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows.
    Li Z; Lai MC
    East Asian J Applied Math; 2011 Jan; 1(2):155-171. PubMed ID: 23795308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions.
    Li Z; Xiao L; Cai Q; Zhao H; Luo R
    J Comput Phys; 2015 Aug; 297():182-193. PubMed ID: 27087702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity.
    Vadala-Roth B; Acharya S; Patankar NA; Rossi S; Griffith BE
    Comput Methods Appl Mech Eng; 2020 Jun; 365():. PubMed ID: 32483394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Lagrangian-Eulerian Coupling in the Immersed Finite Element/Difference Method.
    Lee JH; Griffith BE
    J Comput Phys; 2022 May; 457():. PubMed ID: 35300097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
    Kolahdouz EM; Wells DR; Rossi S; Aycock KI; Craven BA; Griffith BE
    J Comput Phys; 2023 Sep; 488():. PubMed ID: 37214277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel interpolation-free sharp-interface immersed boundary method.
    Kingora K; Sadat-Hosseini H
    J Comput Phys; 2022 Mar; 453():. PubMed ID: 35250049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nested block preconditioning technique for the incompressible Navier-Stokes equations with emphasis on hemodynamic simulations.
    Liu J; Yang W; Dong M; Marsden AL
    Comput Methods Appl Mech Eng; 2020 Aug; 367():. PubMed ID: 32675836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle distribution function discontinuity-based kinetic immersed boundary method for Boltzmann equation and its applications to incompressible viscous flows.
    Xu D; Huang Y; Xu J
    Phys Rev E; 2022 Mar; 105(3-2):035306. PubMed ID: 35428129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid finite difference/finite element immersed boundary method.
    Griffith BE; Luo X
    Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28425587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A VERSATILE SHARP INTERFACE IMMERSED BOUNDARY METHOD FOR INCOMPRESSIBLE FLOWS WITH COMPLEX BOUNDARIES.
    Mittal R; Dong H; Bozkurttas M; Najjar FM; Vargas A; von Loebbecke A
    J Comput Phys; 2008; 227(10):4825-4852. PubMed ID: 20216919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves.
    Kamensky D; Hsu MC; Schillinger D; Evans JA; Aggarwal A; Bazilevs Y; Sacks MS; Hughes TJ
    Comput Methods Appl Mech Eng; 2015 Feb; 284():1005-1053. PubMed ID: 25541566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variational principle for the Navier-Stokes equations.
    Kerswell RR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5482-94. PubMed ID: 11969527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immersed boundary-conformal isogeometric method for linear elliptic problems.
    Wei X; Marussig B; Antolin P; Buffa A
    Comput Mech; 2021; 68(6):1385-1405. PubMed ID: 34789955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows.
    Borazjani I; Ge L; Le T; Sotiropoulos F
    Comput Fluids; 2013 Apr; 77():76-96. PubMed ID: 23833331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unified continuum and variational multiscale formulation for fluids, solids, and fluid-structure interaction.
    Liu J; Marsden AL
    Comput Methods Appl Mech Eng; 2018 Aug; 337():549-597. PubMed ID: 30505038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks.
    Berrone S; Canuto C; Pintore M; Sukumar N
    Heliyon; 2023 Aug; 9(8):e18820. PubMed ID: 37600384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.