These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 37656057)
1. Biochemical Investigations of Five Recombinantly Expressed Tyrosinases Reveal Two Novel Mechanisms Impacting Carbon Storage in Wetland Ecosystems. Panis F; Rompel A Environ Sci Technol; 2023 Sep; 57(37):13863-13873. PubMed ID: 37656057 [TBL] [Abstract][Full Text] [Related]
2. The Novel Role of Tyrosinase Enzymes in the Storage of Globally Significant Amounts of Carbon in Wetland Ecosystems. Panis F; Rompel A Environ Sci Technol; 2022 Sep; 56(17):11952-11968. PubMed ID: 35944157 [TBL] [Abstract][Full Text] [Related]
3. Expression, Purification, and Characterization of a Well-Adapted Tyrosinase from Peatlands Identified by Partial Community Analysis. Panis F; Krachler RF; Krachler R; Rompel A Environ Sci Technol; 2021 Jun; 55(16):11445-54. PubMed ID: 34156250 [TBL] [Abstract][Full Text] [Related]
4. Climate and plant controls on soil organic matter in coastal wetlands. Osland MJ; Gabler CA; Grace JB; Day RH; McCoy ML; McLeod JL; From AS; Enwright NM; Feher LC; Stagg CL; Hartley SB Glob Chang Biol; 2018 Nov; 24(11):5361-5379. PubMed ID: 29957880 [TBL] [Abstract][Full Text] [Related]
5. [Simulating and predicting of carbon cycling in typical wetland ecosystems]. Zhang WJ; Tong CL; Wu JS; Xu MG; Song CC Huan Jing Ke Xue; 2007 Sep; 28(9):1905-11. PubMed ID: 17990529 [TBL] [Abstract][Full Text] [Related]
6. The role of environmental driving factors in historical and projected carbon dynamics of wetland ecosystems in Alaska. Lyu Z; Genet H; He Y; Zhuang Q; McGuire AD; Bennett A; Breen A; Clein J; Euskirchen ES; Johnson K; Kurkowski T; Pastick NJ; Rupp TS; Wylie BK; Zhu Z Ecol Appl; 2018 Sep; 28(6):1377-1395. PubMed ID: 29808543 [TBL] [Abstract][Full Text] [Related]
7. Carbon budgets of wetland ecosystems in China. Xiao D; Deng L; Kim DG; Huang C; Tian K Glob Chang Biol; 2019 Jun; 25(6):2061-2076. PubMed ID: 30884086 [TBL] [Abstract][Full Text] [Related]
8. Carbon Fluxes and Stocks by Mexican Tropical Forested Wetland Soils: A Critical Review of Its Role for Climate Change Mitigation. Zamora S; Sandoval-Herazo LC; Ballut-Dajud G; Del Ángel-Coronel OA; Betanzo-Torres EA; Marín-Muñiz JL Int J Environ Res Public Health; 2020 Oct; 17(20):. PubMed ID: 33050293 [TBL] [Abstract][Full Text] [Related]
10. Impact of climate change on wetland ecosystems: A critical review of experimental wetlands. Salimi S; Almuktar SAAAN; Scholz M J Environ Manage; 2021 May; 286():112160. PubMed ID: 33611067 [TBL] [Abstract][Full Text] [Related]
11. Soil organic carbon pool and chemical composition under different types of land use in wetland: Implication for carbon sequestration in wetlands. Ji H; Han J; Xue J; Hatten JA; Wang M; Guo Y; Li P Sci Total Environ; 2020 May; 716():136996. PubMed ID: 32059329 [TBL] [Abstract][Full Text] [Related]
12. Non-native plant invasion can accelerate global climate change by increasing wetland methane and terrestrial nitrous oxide emissions. Bezabih Beyene B; Li J; Yuan J; Dong Y; Liu D; Chen Z; Kim J; Kang H; Freeman C; Ding W Glob Chang Biol; 2022 Sep; 28(18):5453-5468. PubMed ID: 35665574 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the carbon accumulation capability and carbon storage of different types of wetlands in the Nanhui tidal flat of the Yangtze River estuary. Dong H; Qian L; Yan J; Wang L Environ Monit Assess; 2020 Aug; 192(9):585. PubMed ID: 32809133 [TBL] [Abstract][Full Text] [Related]
14. Ecosystem type drives tea litter decomposition and associated prokaryotic microbiome communities in freshwater and coastal wetlands at a continental scale. Trevathan-Tackett SM; Kepfer-Rojas S; Engelen AH; York PH; Ola A; Li J; Kelleway JJ; Jinks KI; Jackson EL; Adame MF; Pendall E; Lovelock CE; Connolly RM; Watson A; Visby I; Trethowan A; Taylor B; Roberts TNB; Petch J; Farrington L; Djukic I; Macreadie PI Sci Total Environ; 2021 Aug; 782():146819. PubMed ID: 33838377 [TBL] [Abstract][Full Text] [Related]
15. Connecting carbon and nitrogen storage in rural wetland soil to groundwater abstraction for urban water supply. Lewis DB; Feit SJ Glob Chang Biol; 2015 Apr; 21(4):1704-14. PubMed ID: 25394332 [TBL] [Abstract][Full Text] [Related]
16. [Carbon storage distribution characteristics of wetlands in China and its influencing factors.]. Liu YN; Xi M; Zhang XL; Yu ZD; Kong FL Ying Yong Sheng Tai Xue Bao; 2019 Jul; 30(7):2481-2489. PubMed ID: 31418251 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the characteristics of fungal and plant tyrosinases. Selinheimo E; NiEidhin D; Steffensen C; Nielsen J; Lomascolo A; Halaouli S; Record E; O'Beirne D; Buchert J; Kruus K J Biotechnol; 2007 Jul; 130(4):471-80. PubMed ID: 17602775 [TBL] [Abstract][Full Text] [Related]
18. Characterization of two bacterial tyrosinases from the halophilic bacterium Hahella sp. CCB MM4 relevant for phenolic compounds oxidation in wetlands. de Almeida Santos G; Englund ANB; Dalleywater EL; Røhr ÅK FEBS Open Bio; 2024 Oct; ():. PubMed ID: 39382070 [TBL] [Abstract][Full Text] [Related]
19. Temporal and spatial distributions of ammonia-oxidizing archaea and bacteria and their ratio as an indicator of oligotrophic conditions in natural wetlands. Sims A; Horton J; Gajaraj S; McIntosh S; Miles RJ; Mueller R; Reed R; Hu Z Water Res; 2012 Sep; 46(13):4121-9. PubMed ID: 22673339 [TBL] [Abstract][Full Text] [Related]
20. Flooding duration affects the temperature sensitivity of soil extracellular enzyme activities in a lakeshore wetland in Poyang Lake, China. Huang X; Wang K; Wen X; Liu J; Zhang Y; Rong J; Nie M; Fu C; Zheng B; Yuan Z; Gong L; Zhan H; Shen R Sci Total Environ; 2023 May; 874():162397. PubMed ID: 36848996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]