BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37656065)

  • 1. Deep learning-based fast denoising of Monte Carlo dose calculation in carbon ion radiotherapy.
    Zhang X; Zhang H; Wang J; Ma Y; Liu X; Dai Z; He R; He P; Li Q
    Med Phys; 2023 Dec; 50(12):7314-7323. PubMed ID: 37656065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A plan verification platform for online adaptive proton therapy using deep learning-based Monte-Carlo denoising.
    Zhang G; Chen X; Dai J; Men K
    Phys Med; 2022 Nov; 103():18-25. PubMed ID: 36201903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitigating inherent noise in Monte Carlo dose distributions using dilated U-Net.
    Javaid U; Souris K; Dasnoy D; Huang S; Lee JA
    Med Phys; 2019 Dec; 46(12):5790-5798. PubMed ID: 31600829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel multichannel deep learning model for fast denoising of Monte Carlo dose calculations: preclinical applications.
    van Dijk RHW; Staut N; Wolfs CJA; Verhaegen F
    Phys Med Biol; 2022 Aug; 67(16):. PubMed ID: 35938467
    [No Abstract]   [Full Text] [Related]  

  • 5. Development and validation of MonteRay, a fast Monte Carlo dose engine for carbon ion beam radiotherapy.
    Lysakovski P; Kopp B; Tessonnier T; Mein S; Ferrari A; Haberer T; Debus J; Mairani A
    Med Phys; 2024 Feb; 51(2):1433-1449. PubMed ID: 37748042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Denoising proton therapy Monte Carlo dose distributions in multiple tumor sites: A comparative neural networks architecture study.
    Javaid U; Souris K; Huang S; Lee JA
    Phys Med; 2021 Sep; 89():93-103. PubMed ID: 34358755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepMC: a deep learning method for efficient Monte Carlo beamlet dose calculation by predictive denoising in magnetic resonance-guided radiotherapy.
    Neph R; Lyu Q; Huang Y; Yang YM; Sheng K
    Phys Med Biol; 2021 Jan; 66(3):035022. PubMed ID: 33181498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulation-based patient-specific QA using machine log files for line-scanning proton radiation therapy.
    Jeon C; Lee J; Shin J; Cheon W; Ahn S; Jo K; Han Y
    Med Phys; 2023 Nov; 50(11):7139-7153. PubMed ID: 37756652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A noise correction of the γ-index method for Monte Carlo dose distribution comparison.
    Cohilis M; Sterpin E; Lee JA; Souris K
    Med Phys; 2020 Feb; 47(2):681-692. PubMed ID: 31660623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative assessment of the accuracy of dose calculation using pencil beam and Monte Carlo algorithms and requirements for clinical quality assurance.
    Ali I; Ahmad S
    Med Dosim; 2013; 38(3):255-61. PubMed ID: 23558145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of out-of-field dose distribution in carbon-ion radiotherapy by Monte Carlo simulation.
    Yonai S; Matsufuji N; Namba M
    Med Phys; 2012 Aug; 39(8):5028-39. PubMed ID: 22894428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalisation of radiotherapy dose calculation for Monte Carlo algorithm combined with 3D Swin-Unet: a multi-institutional IMRT evaluation.
    Zhang B; Zhuang Y; Li Y; Chen L; Liu X; Liu Z; Wang X; Zhu J
    Phys Med Biol; 2023 Oct; 68(21):. PubMed ID: 37827160
    [No Abstract]   [Full Text] [Related]  

  • 13. A comparison of Monte Carlo dose calculation denoising techniques.
    El Naqa I; Kawrakow I; Fippel M; Siebers JV; Lindsay PE; Wickerhauser MV; Vicic M; Zakarian K; Kauffmann N; Deasy JO
    Phys Med Biol; 2005 Mar; 50(5):909-22. PubMed ID: 15798264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement comparison and Monte Carlo analysis for volumetric-modulated arc therapy (VMAT) delivery verification using the ArcCHECK dosimetry system.
    Lin MH; Koren S; Veltchev I; Li J; Wang L; Price RA; Ma CM
    J Appl Clin Med Phys; 2013 May; 14(2):3929. PubMed ID: 23470927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and accurate dose predictions for novel radiotherapy treatments in heterogeneous phantoms using conditional 3D-UNet generative adversarial networks.
    Mentzel F; Kröninger K; Lerch M; Nackenhorst O; Paino J; Rosenfeld A; Saraswati A; Tsoi AC; Weingarten J; Hagenbuchner M; Guatelli S
    Med Phys; 2022 May; 49(5):3389-3404. PubMed ID: 35184310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial development of goCMC: a GPU-oriented fast cross-platform Monte Carlo engine for carbon ion therapy.
    Qin N; Pinto M; Tian Z; Dedes G; Pompos A; Jiang SB; Parodi K; Jia X
    Phys Med Biol; 2017 May; 62(9):3682-3699. PubMed ID: 28140352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. External beam patient dose verification based on the integral quality monitor (IQM
    Mahuvava C; Du Plessis FCP
    Biomed Phys Eng Express; 2020 Mar; 6(3):035014. PubMed ID: 33438659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full Monte Carlo-Based Biologic Treatment Plan Optimization System for Intensity Modulated Carbon Ion Therapy on Graphics Processing Unit.
    Qin N; Shen C; Tsai MY; Pinto M; Tian Z; Dedes G; Pompos A; Jiang SB; Parodi K; Jia X
    Int J Radiat Oncol Biol Phys; 2018 Jan; 100(1):235-243. PubMed ID: 29079118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and benchmarking of the first fast Monte Carlo engine for helium ion beam dose calculation: MonteRay.
    Lysakovski P; Besuglow J; Kopp B; Mein S; Tessonnier T; Ferrari A; Haberer T; Debus J; Mairani A
    Med Phys; 2023 Apr; 50(4):2510-2524. PubMed ID: 36542403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convolution neural network toward Monte Carlo photon dose calculation in radiation therapy.
    Zhang B; Liu X; Chen L; Zhu J
    Med Phys; 2022 Feb; 49(2):1248-1261. PubMed ID: 34897703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.