These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37656544)

  • 1. US-BSF: a unified simplification of BSF model with different scattering phase functions for underwater wireless optical communication.
    Yang F; Zhong R; Cao G
    Opt Lett; 2023 Sep; 48(17):4524-4527. PubMed ID: 37656544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and performance analysis of underwater wireless optical absorption, scattering, and turbulence channels employing Monte Carlo-multiple phase screens.
    Wen H; Yin H; Ji X; Huang A
    Appl Opt; 2023 Sep; 62(26):6883-6891. PubMed ID: 37707026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A metasurface-based full-color circular auto-focusing Airy beam transmitter for stable high-speed underwater wireless optical communications.
    Hu J; Guo Z; Shi J; Jiang X; Chen Q; Chen H; He Z; Song Q; Xiao S; Yu S; Chi N; Shen C
    Nat Commun; 2024 Apr; 15(1):2944. PubMed ID: 38580656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical solution of beam spread function for ocean light radiative transfer.
    Xu Z; Yue DK
    Opt Express; 2015 Jul; 23(14):17966-78. PubMed ID: 26191856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Average capacity of an underwater wireless communication link with the quasi-Airy hypergeometric-Gaussian vortex beam based on a modified channel model.
    Chen H; Zhang P; He S; Dai H; Fan Y; Wang Y; Tong S
    Opt Express; 2023 Jul; 31(15):24067-24084. PubMed ID: 37475243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-reversal waveform design for underwater wireless optical communication systems.
    Wang J; Lian J
    Opt Express; 2023 Sep; 31(19):31447-31462. PubMed ID: 37710664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CMOS monolithic photodetector with a built-in 2-dimensional light direction sensor for laser diode based underwater wireless optical communications.
    Lv Z; He G; Qiu C; Fan Y; Wang H; Liu Z
    Opt Express; 2021 May; 29(11):16197-16204. PubMed ID: 34154188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance evaluation and comparative research of underwater wireless optical communication system by using different structured beams.
    He S; Zhang P; Yu H; Tian D; Chen H; Dai H; Ye P; Wang D; Tong S
    J Opt Soc Am A Opt Image Sci Vis; 2024 Jun; 41(6):B48-B54. PubMed ID: 38856403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of 3 dB Optical Intensity Spot Radius of Laser Beam under Scattering Underwater Channel.
    Wang W; Li X; Rajbhandari S; Li Y
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31940825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autoencoder based underwater wireless optical communication with high data rate.
    Zou C; Yang F
    Opt Lett; 2021 Mar; 46(6):1446-1449. PubMed ID: 33720208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of a Monte-Carlo-simulation-based turbulence-induced attenuation model for an underwater wireless optical communications channel.
    Xu D; Yue P; Yi X; Liu J
    J Opt Soc Am A Opt Image Sci Vis; 2022 Aug; 39(8):1330-1342. PubMed ID: 36215576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Multipath Attenuation in the Optical Communication-Based Internet of Underwater Things.
    Qadar R; Bin Qaim W; Nurmi J; Tan B
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33143235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling turbulence in underwater wireless optical communications based on Monte Carlo simulation.
    Vali Z; Gholami A; Ghassemlooy Z; Michelson DG; Omoomi M; Noori H
    J Opt Soc Am A Opt Image Sci Vis; 2017 Jul; 34(7):1187-1193. PubMed ID: 29036128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Average capacity of a UWOC system with partially coherent Gaussian beams propagating in weak oceanic turbulence.
    Zou Z; Wang P; Chen W; Li A; Tian H; Guo L
    J Opt Soc Am A Opt Image Sci Vis; 2019 Sep; 36(9):1463-1474. PubMed ID: 31503838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and experimental demonstration of underwater wireless optical communication system based on semantic communication paradigm.
    Xu J; Huang Z; Gao Y; Zhai W; Qiu H; Ji Y
    Opt Express; 2024 Jan; 32(2):2188-2201. PubMed ID: 38297754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unified statistical thermocline channel model for underwater wireless optical communication.
    Qiu H; Huang Z; Xu J; Zhai W; Gao Y; Ji Y
    Opt Lett; 2023 Feb; 48(3):636-639. PubMed ID: 36723551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte-Carlo based vertical underwater optical communication performance analysis with chlorophyll depth profiles.
    Yi X; Liu J; Liu Y; Ata Y
    Opt Express; 2023 Dec; 31(25):41684-41700. PubMed ID: 38087561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-parameter two-term Henyey-Greenstein phase function for light scattering in seawater.
    Haltrin VI
    Appl Opt; 2002 Feb; 41(6):1022-8. PubMed ID: 11900120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on performance of a relay-assisted UWOC system based on adaptive optics.
    Zhang J; Li J; He H; He G; Yang Y; He F
    J Opt Soc Am A Opt Image Sci Vis; 2023 Dec; 40(12):2187-2196. PubMed ID: 38086027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composite channel modeling for underwater optical wireless communication and analysis of multiple scattering characteristics.
    Kou L; Zhang J; Zhang P; Yang Y; He F
    Opt Express; 2023 Mar; 31(7):11320-11334. PubMed ID: 37155770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.