These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 37656775)

  • 1. Cellular and molecular waypoints along the path of T cell exhaustion.
    Lan X; Zebley CC; Youngblood B
    Sci Immunol; 2023 Sep; 8(87):eadg3868. PubMed ID: 37656775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CD8
    Wang Q; Qin Y; Li B
    Cancer Lett; 2023 Apr; 559():216043. PubMed ID: 36584935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation and Immunotherapeutic Targeting of the Epigenome in Exhausted CD8 T Cell Responses.
    Ford BR; Poholek AC
    J Immunol; 2023 Apr; 210(7):869-879. PubMed ID: 36947818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CD8
    Huang Y; Jia A; Wang Y; Liu G
    Immunology; 2023 Jan; 168(1):30-48. PubMed ID: 36190809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Landscapes and mechanisms of CD8
    Ding JT; Yang KP; Zhou HN; Huang YF; Li H; Zong Z
    Front Immunol; 2023; 14():1149622. PubMed ID: 37180158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Road Less Taken: Less Appreciated Pathways for Manipulating CD8
    Pichler AC; Cannons JL; Schwartzberg PL
    Front Immunol; 2022; 13():926714. PubMed ID: 35874734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exhausted CD8+T Cells in the Tumor Immune Microenvironment: New Pathways to Therapy.
    Jiang W; He Y; He W; Wu G; Zhou X; Sheng Q; Zhong W; Lu Y; Ding Y; Lu Q; Ye F; Hua H
    Front Immunol; 2020; 11():622509. PubMed ID: 33633741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of CD4 T cells on intratumoral CD8 T-cell exhaustion and responsiveness to PD-1 blockade therapy in mouse brain tumors.
    Khan SM; Desai R; Coxon A; Livingstone A; Dunn GP; Petti A; Johanns TM
    J Immunother Cancer; 2022 Dec; 10(12):. PubMed ID: 36543376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development of CD8 T-cell exhaustion heterogeneity and the therapeutic potentials in cancer.
    Zhang J; Lei F; Tan H
    Front Immunol; 2023; 14():1166128. PubMed ID: 37275913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CD8 T-cell heterogeneity during T-cell exhaustion and PD-1-targeted immunotherapy.
    Ando S; Araki K
    Int Immunol; 2022 Oct; 34(11):571-577. PubMed ID: 35901837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progressive loss of memory T cell potential and commitment to exhaustion during chronic viral infection.
    Angelosanto JM; Blackburn SD; Crawford A; Wherry EJ
    J Virol; 2012 Aug; 86(15):8161-70. PubMed ID: 22623779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PSGL-1 attenuates early TCR signaling to suppress CD8
    Hope JL; Otero DC; Bae EA; Stairiker CJ; Palete AB; Faso HA; Lin M; Henriquez ML; Roy S; Seo H; Lei X; Wang ES; Chow S; Tinoco R; Daniels GA; Yip K; Campos AR; Yin J; Adams PD; Rao A; Bradley LM
    Cell Rep; 2023 May; 42(5):112436. PubMed ID: 37115668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycogen synthase kinase 3 controls T-cell exhaustion by regulating NFAT activation.
    Fu Y; Wang J; Liu C; Liao K; Gao X; Tang R; Fan B; Hong Y; Xiao N; Xiao C; Liu WH
    Cell Mol Immunol; 2023 Oct; 20(10):1127-1139. PubMed ID: 37553428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T-cell exhaustion and stemness in antitumor immunity: Characteristics, mechanisms, and implications.
    Chi X; Luo S; Ye P; Hwang WL; Cha JH; Yan X; Yang WH
    Front Immunol; 2023; 14():1104771. PubMed ID: 36891319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD8+ T-cell exhaustion in cancer: mechanisms and new area for cancer immunotherapy.
    He QF; Xu Y; Li J; Huang ZM; Li XH; Wang X
    Brief Funct Genomics; 2019 Mar; 18(2):99-106. PubMed ID: 29554204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD8 T Cell Exhaustion in Chronic Infection and Cancer: Opportunities for Interventions.
    Hashimoto M; Kamphorst AO; Im SJ; Kissick HT; Pillai RN; Ramalingam SS; Araki K; Ahmed R
    Annu Rev Med; 2018 Jan; 69():301-318. PubMed ID: 29414259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reinvigorating exhausted CD8
    Hossain MA; Liu G; Dai B; Si Y; Yang Q; Wazir J; Birnbaumer L; Yang Y
    Med Res Rev; 2021 Jan; 41(1):156-201. PubMed ID: 32844499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The CD8+ T cell exhaustion mechanisms in chronic hepatitis B infection and immunotherapeutic strategies: a systematic review.
    Allahmoradi E; Mohammadi R; Kheirandish Zarandi P; Alavian SM; Heiat M
    Expert Rev Clin Immunol; 2023 Jun; 19(6):671-688. PubMed ID: 37013795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deletion of SNX9 alleviates CD8 T cell exhaustion for effective cellular cancer immunotherapy.
    Trefny MP; Kirchhammer N; Auf der Maur P; Natoli M; Schmid D; Germann M; Fernandez Rodriguez L; Herzig P; Lötscher J; Akrami M; Stinchcombe JC; Stanczak MA; Zingg A; Buchi M; Roux J; Marone R; Don L; Lardinois D; Wiese M; Jeker LT; Bentires-Alj M; Rossy J; Thommen DS; Griffiths GM; Läubli H; Hess C; Zippelius A
    Nat Commun; 2023 Feb; 14(1):86. PubMed ID: 36732507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular and Molecular Mechanisms of CD8
    Verdon DJ; Mulazzani M; Jenkins MR
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33027962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.