These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37656858)

  • 1. Thermal Transport in Nanoelectronic Devices Cooled by On-Chip Magnetic Refrigeration.
    Autti S; Bettsworth FC; Grigoras K; Gunnarsson D; Haley RP; Jones AT; Pashkin YA; Prance JR; Prunnila M; Thompson MD; Zmeev DE
    Phys Rev Lett; 2023 Aug; 131(7):077001. PubMed ID: 37656858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 500 microkelvin nanoelectronics.
    Sarsby M; Yurttagül N; Geresdi A
    Nat Commun; 2020 Mar; 11(1):1492. PubMed ID: 32198382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoelectronic primary thermometry below 4 mK.
    Bradley DI; George RE; Gunnarsson D; Haley RP; Heikkinen H; Pashkin YA; Penttilä J; Prance JR; Prunnila M; Roschier L; Sarsby M
    Nat Commun; 2016 Jan; 7():10455. PubMed ID: 26816217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling.
    Tokiwa Y; Piening B; Jeevan HS; Bud'ko SL; Canfield PC; Gegenwart P
    Sci Adv; 2016 Sep; 2(9):e1600835. PubMed ID: 27626073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress in Cooling Nanoelectronic Devices to Ultra-Low Temperatures.
    Jones AT; Scheller CP; Prance JR; Kalyoncu YB; Zumbühl DM; Haley RP
    J Low Temp Phys; 2020; 201(5):772-802. PubMed ID: 33239828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip magnetic cooling of a nanoelectronic device.
    Bradley DI; Guénault AM; Gunnarsson D; Haley RP; Holt S; Jones AT; Pashkin YA; Penttilä J; Prance JR; Prunnila M; Roschier L
    Sci Rep; 2017 Apr; 7():45566. PubMed ID: 28374845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooling low-dimensional electron systems into the microkelvin regime.
    Levitin LV; van der Vliet H; Theisen T; Dimitriadis S; Lucas M; Corcoles AD; Nyéki J; Casey AJ; Creeth G; Farrer I; Ritchie DA; Nicholls JT; Saunders J
    Nat Commun; 2022 Feb; 13(1):667. PubMed ID: 35115494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic cooling for microkelvin nanoelectronics on a cryofree platform.
    Palma M; Maradan D; Casparis L; Liu TM; Froning FNM; Zumbühl DM
    Rev Sci Instrum; 2017 Apr; 88(4):043902. PubMed ID: 28456265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metallic Coulomb blockade thermometry down to 10 mK and below.
    Casparis L; Meschke M; Maradan D; Clark AC; Scheller CP; Schwarzwälder KK; Pekola JP; Zumbühl DM
    Rev Sci Instrum; 2012 Aug; 83(8):083903. PubMed ID: 22938310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method for cooling nanostructures to microkelvin temperatures.
    Clark AC; Schwarzwälder KK; Bandi T; Maradan D; Zumbühl DM
    Rev Sci Instrum; 2010 Oct; 81(10):103904. PubMed ID: 21034099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct temperature mapping of nanoscale plasmonic devices.
    Desiatov B; Goykhman I; Levy U
    Nano Lett; 2014 Feb; 14(2):648-52. PubMed ID: 24422562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A surface-patterned chip as a strong source of ultracold atoms for quantum technologies.
    Nshii CC; Vangeleyn M; Cotter JP; Griffin PF; Hinds EA; Ironside CN; See P; Sinclair AG; Riis E; Arnold AS
    Nat Nanotechnol; 2013 May; 8(5):321-4. PubMed ID: 23563845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gd Metal-Organic Framework Thin Film for On-Chip Local Magnetic Refrigeration.
    Tejedor I; Kravchenko DE; Gandara-Loe J; Ameloot R; Gascón I; Roubeau O
    Chem Mater; 2024 Sep; 36(17):8239-8246. PubMed ID: 39285899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Few-qubit quantum refrigerator for cooling a multi-qubit system.
    Arısoy O; Müstecaplıoğlu ÖE
    Sci Rep; 2021 Jun; 11(1):12981. PubMed ID: 34155244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical refrigeration with coupled quantum wells.
    Daveau RS; Tighineanu P; Lodahl P; Stobbe S
    Opt Express; 2015 Sep; 23(19):25340-9. PubMed ID: 26406730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of alternative cooling devices used for insulin storage without refrigeration under hot-humid environment.
    Taerahkun S; Sriphrapradang C
    Ann Med; 2022 Dec; 54(1):1118-1125. PubMed ID: 35443846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Achieving Magnetic Refrigerants with Large Magnetic Entropy Changes and Low Magnetic Ordering Temperatures.
    Xu QF; Chen MT; Wu RT; Long LS; Zheng LS
    J Am Chem Soc; 2024 Jul; 146(29):20116-20121. PubMed ID: 39007298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise thermometry at ultra-low temperatures.
    Rothfuss D; Reiser A; Fleischmann A; Enss C
    Philos Trans A Math Phys Eng Sci; 2016 Mar; 374(2064):20150051. PubMed ID: 26903101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryogen-free one hundred microkelvin refrigerator.
    Yan J; Yao J; Shvarts V; Du RR; Lin X
    Rev Sci Instrum; 2021 Feb; 92(2):025120. PubMed ID: 33648063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dry demagnetization cryostat for sub-millikelvin helium experiments: refrigeration and thermometry.
    Todoshchenko I; Kaikkonen JP; Blaauwgeers R; Hakonen PJ; Savin A
    Rev Sci Instrum; 2014 Aug; 85(8):085106. PubMed ID: 25173311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.