These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37657329)

  • 1. Biofilm electrode reactor coupled manganese ore substrate up-flow microbial fuel cell-constructed wetland system: High removal efficiencies of antibiotic, zinc (II), and the corresponding antibiotic resistance genes.
    Li H; Cao H; Li T; He Z; Zhao J; Zhang Y; Song HL
    J Hazard Mater; 2023 Oct; 460():132394. PubMed ID: 37657329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced removal of antibiotic and antibiotic resistance genes by coupling biofilm electrode reactor and manganese ore substrate up-flow microbial fuel cell constructed wetland system.
    Li H; Wang K; Xu J; Wu H; Ma Y; Zou R; Song HL
    Chemosphere; 2023 Oct; 338():139461. PubMed ID: 37437616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A continuous flow MFC-CW coupled with a biofilm electrode reactor to simultaneously attenuate sulfamethoxazole and its corresponding resistance genes.
    Li H; Song HL; Yang XL; Zhang S; Yang YL; Zhang LM; Xu H; Wang YW
    Sci Total Environ; 2018 Oct; 637-638():295-305. PubMed ID: 29751310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibiotic resistance genes, bacterial communities, and functions in constructed wetland-microbial fuel cells: Responses to the co-stresses of antibiotics and zinc.
    Li H; Xu H; Song HL; Lu Y; Yang XL
    Environ Pollut; 2020 Oct; 265(Pt B):115084. PubMed ID: 32806463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A system composed of a biofilm electrode reactor and a microbial fuel cell-constructed wetland exhibited efficient sulfamethoxazole removal but induced sul genes.
    Zhang S; Song HL; Yang XL; Li H; Wang YW
    Bioresour Technol; 2018 May; 256():224-231. PubMed ID: 29453048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland.
    Li H; Xu H; Yang YL; Yang XL; Wu Y; Zhang S; Song HL
    Water Res; 2019 Nov; 165():114988. PubMed ID: 31442759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of sulfonamide resistance genes and bacterial community function prediction in microbial fuel cell-constructed wetland treating pharmaceutical wastewater.
    Li H; Cai Y; Gu Z; Yang YL; Zhang S; Yang XL; Song HL
    Chemosphere; 2020 Jun; 248():126014. PubMed ID: 31995737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the coexposure of sulfadiazine, ciprofloxacin and zinc on the fate of antibiotic resistance genes, bacterial communities and functions in three-dimensional biofilm-electrode reactors.
    Li H; Song HL; Xu H; Lu Y; Zhang S; Yang YL; Yang XL; Lu YX
    Bioresour Technol; 2020 Jan; 296():122290. PubMed ID: 31677404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of antibiotic resistance genes in microbial fuel cell-coupled constructed wetlands treating antibiotic-polluted water.
    Zhang S; Song HL; Yang XL; Huang S; Dai ZQ; Li H; Zhang YY
    Chemosphere; 2017 Jul; 178():548-555. PubMed ID: 28351013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High removal efficiencies of antibiotics and low accumulation of antibiotic resistant genes obtained in microbial fuel cell-constructed wetlands intensified by sponge iron.
    Wen H; Zhu H; Yan B; Bañuelos G; Shutes B; Wang X; Cao S; Cheng R; Tian L
    Sci Total Environ; 2022 Feb; 806(Pt 1):150220. PubMed ID: 34560453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous reduction of antibiotics leakage and methane emission from constructed wetland by integrating microbial fuel cell.
    Xu H; Song HL; Singh RP; Yang YL; Xu JY; Yang XL
    Bioresour Technol; 2021 Jan; 320(Pt A):124285. PubMed ID: 33130542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous removal of heavy metals and bioelectricity generation in microbial fuel cell coupled with constructed wetland: an optimization study on substrate and plant types.
    Wang L; Xu D; Zhang Q; Liu T; Tao Z
    Environ Sci Pollut Res Int; 2022 Jan; 29(1):768-778. PubMed ID: 34341922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous removal of antibiotics and nitrogen by microbial fuel cell-constructed wetlands: Microbial response and carbon-nitrogen metabolism pathways.
    Xu W; Yang B; Wang H; Zhang L; Dong J; Liu C
    Sci Total Environ; 2023 Oct; 893():164855. PubMed ID: 37331404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eco-electrogenic treatment of dyestuff wastewater using constructed wetland-microbial fuel cell system with an evaluation of electrode-enriched microbial community structures.
    Rathour R; Patel D; Shaikh S; Desai C
    Bioresour Technol; 2019 Aug; 285():121349. PubMed ID: 31004945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of microbial community and resistance gene (CzcA) shifts in up-flow constructed wetlands-microbial fuel cell treating Zn (II) contaminated wastewater.
    Wang Q; Lv R; Rene ER; Qi X; Hao Q; Du Y; Zhao C; Xu F; Kong Q
    Bioresour Technol; 2020 Apr; 302():122867. PubMed ID: 32007853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced denitrification and power generation of municipal wastewater treatment plants (WWTPs) effluents with biomass in microbial fuel cell coupled with constructed wetland.
    Tao M; Guan L; Jing Z; Tao Z; Wang Y; Luo H; Wang Y
    Sci Total Environ; 2020 Mar; 709():136159. PubMed ID: 31887514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The environmental risk assessment of constructed wetlands filled with iron and manganese ores in typical antibiotic treatment.
    Zhang X; Li C; Yao D; Hu X; Xie H; Hu Z; Liang S; Zhang J
    Environ Res; 2024 Jan; 240(Pt 2):117567. PubMed ID: 37923106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The performance of the microbial fuel cell-coupled constructed wetland system and the influence of the anode bacterial community.
    Li T; Fang Z; Yu R; Cao X; Song H; Li X
    Environ Technol; 2016; 37(13):1683-92. PubMed ID: 26652300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of lab-scale microbial fuel cell coupled with unplanted constructed wetland for hexavalent chromium removal and electricity production.
    Mu C; Wang L; Wang L
    Environ Sci Pollut Res Int; 2020 Jul; 27(20):25140-25148. PubMed ID: 32347498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced nickel removal and synchronous bioelectricity generation based on substrate types in microbial fuel cell coupled with constructed wetland: performance and microbial response.
    Cheng Z; Xu D; Zhang Q; Tao Z; Hong R; Chen Y; Tang X; Zeng S; Wang S
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):19725-19736. PubMed ID: 36239892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.