BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37657330)

  • 1. Adsorption of Tunable aryl alkyl ionic liquids (TILs) on the graphene and Defective graphene nanosheets: A DFT Study.
    Shakouri S; Khalili B; Nikpasand M; Kefayati H
    J Mol Graph Model; 2023 Dec; 125():108612. PubMed ID: 37657330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of defect types on the electronic and optical properties of graphene nanoflakes physisorbed by ionic liquids.
    Shakourian-Fard M; Kamath G
    Phys Chem Chem Phys; 2017 Feb; 19(6):4383-4395. PubMed ID: 28119976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geminal Dicationic Ionic Liquids (GDILs) and Their Adsorption on Graphene Nanoflakes.
    Shakourian-Fard M; Ghenaatian HR; Kamath G
    ACS Omega; 2024 Feb; 9(7):7575-7587. PubMed ID: 38405523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DFT study of ozone dissociation on BC₃ graphene with Stone-Wales defects.
    Peyghan AA; Moradi M
    J Mol Model; 2014 Jan; 20(1):2071. PubMed ID: 24452908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfaces of dicationic ionic liquids and graphene: a molecular dynamics simulation study.
    Li S; Feng G; Cummings PT
    J Phys Condens Matter; 2014 Jul; 26(28):284106. PubMed ID: 24920318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the nature of interaction and stability between DNA/RNA base pairs and defective & defect-dopant graphene sheets. A possible insights on DNA/RNA sequencing.
    Saravanan V; Rajamani A; Vasudevan S; Ramasamy S
    Int J Biol Macromol; 2020 Mar; 146():387-404. PubMed ID: 31917208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Charge-Transfer Doping of Graphene Nanoflakes Containing Double-Vacancy (5-8-5) and Stone-Wales (55-77) Defects through Molecular Adsorption.
    Shakourian-Fard M; Jamshidi Z; Kamath G
    Chemphyschem; 2016 Oct; 17(20):3289-3299. PubMed ID: 27432283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A DFT investigation of lithium adsorption on graphenes as a potential anode material in lithium-ion batteries.
    De Souza LA; Monteiro de Castro G; Marques LF; Belchior JC
    J Mol Graph Model; 2021 Nov; 108():107998. PubMed ID: 34371459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets.
    Wang J; Chen Z; Chen B
    Environ Sci Technol; 2014 May; 48(9):4817-25. PubMed ID: 24678934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of unified impact of Ti adatom and N doping on hydrogen gas adsorption capabilities of defected graphene sheets.
    Luhadiya N; Choyal V; Kundalwal SI; Sahu SK
    J Mol Graph Model; 2023 Mar; 119():108399. PubMed ID: 36563644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron(II) Phthalocyanine Adsorbed on Defective Graphenes: A Density Functional Study.
    Yin H; Lin H; Zhang Y; Huang S
    ACS Omega; 2022 Dec; 7(48):43915-43922. PubMed ID: 36506202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Influence of Ionic Liquids Adsorption on the Electronic and Optical Properties of Phosphorene and Arsenene with Different Phases: A Computational Study.
    Zhu L; Fu A
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of organic contaminants by graphene nanosheets: A review.
    Ersan G; Apul OG; Perreault F; Karanfil T
    Water Res; 2017 Dec; 126():385-398. PubMed ID: 28987890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A facile one-pot synthesis of starch functionalized graphene as nano-carrier for pH sensitive and starch-mediated drug delivery.
    Liu K; Wang Y; Li H; Duan Y
    Colloids Surf B Biointerfaces; 2015 Apr; 128():86-93. PubMed ID: 25731097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Systematic Study of DFT Performance for Geometry Optimizations of Ionic Liquid Clusters.
    Seeger ZL; Izgorodina EI
    J Chem Theory Comput; 2020 Oct; 16(10):6735-6753. PubMed ID: 32865998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced adsorption of hydrophobic organic contaminants by high surface area porous graphene.
    Ma L; Li K; Wang C; Liu B; Peng H; Mei Y; Ning P
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):7309-7317. PubMed ID: 31884546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ examination of graphene and graphene oxide impact on the depuration of phenanthrene and fluoranthene adsorbed onto spinach (Spinacia oleracea L.) leaf surfaces.
    Sun H; Feng R; Nan Y; Chen Z; Sang N
    Environ Pollut; 2018 Jun; 237():968-976. PubMed ID: 29137885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The comparison of different gold nanoparticles/graphene nanosheets hybrid nanocomposites in electrochemical performance and the construction of a sensitive uric acid electrochemical sensor with novel hybrid nanocomposites.
    Xue Y; Zhao H; Wu Z; Li X; He Y; Yuan Z
    Biosens Bioelectron; 2011 Nov; 29(1):102-8. PubMed ID: 21871789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of choline benzoate ionic liquid on graphene, silicene, germanene and boron-nitride nanosheets: a DFT perspective.
    García G; Atilhan M; Aparicio S
    Phys Chem Chem Phys; 2015 Jul; 17(25):16315-26. PubMed ID: 26040507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic liquid-graphene hybrid nanosheets as an enhanced material for electrochemical determination of trinitrotoluene.
    Guo S; Wen D; Zhai Y; Dong S; Wang E
    Biosens Bioelectron; 2011 Apr; 26(8):3475-81. PubMed ID: 21333522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.