BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37657402)

  • 1. Mixed-mode column allows simple direct coupling with immobilized enzymatic reactor for on-line protein digestion.
    Vosáhlová-Kadlecová Z; Gilar M; Molnárová K; Kozlík P; Kalíková K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2023 Aug; 1228():123866. PubMed ID: 37657402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance comparison of three trypsin columns used in liquid chromatography.
    Šlechtová T; Gilar M; Kalíková K; Moore SM; Jorgenson JW; Tesařová E
    J Chromatogr A; 2017 Mar; 1490():126-132. PubMed ID: 28215403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and application of immobilized enzymatic reactors for consecutive digestion with two enzymes.
    Wang B; Shangguan L; Wang S; Zhang L; Zhang W; Liu F
    J Chromatogr A; 2016 Dec; 1477():22-29. PubMed ID: 27884426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards automation in protein digestion: Development of a monolithic trypsin immobilized reactor for highly efficient on-line digestion and analysis.
    Naldi M; Černigoj U; Štrancar A; Bartolini M
    Talanta; 2017 May; 167():143-157. PubMed ID: 28340705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion.
    Yuan H; Zhang L; Zhang Y
    J Chromatogr A; 2014 Dec; 1371():48-57. PubMed ID: 25456586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of bi-enzymatic reactor based on hybrid monolith with nanoparticles embedded and its proteolytic characteristics.
    Shangguan L; Zhang L; Xiong Z; Ren J; Zhang R; Gao F; Zhang W
    J Chromatogr A; 2015 Apr; 1388():158-66. PubMed ID: 25728656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of magnetic metal organic frameworks for highly efficient proteolytic digestion used in mass spectrometry-based proteomics.
    Zhai R; Yuan Y; Jiao F; Hao F; Fang X; Zhang Y; Qian X
    Anal Chim Acta; 2017 Nov; 994():19-28. PubMed ID: 29126465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity.
    Ma J; Liang Z; Qiao X; Deng Q; Tao D; Zhang L; Zhang Y
    Anal Chem; 2008 Apr; 80(8):2949-56. PubMed ID: 18333626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of an immobilized enzyme reactor for on-line protein digestion.
    Moore S; Hess S; Jorgenson J
    J Chromatogr A; 2016 Dec; 1476():1-8. PubMed ID: 27876348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hydrophilic immobilized trypsin reactor with N-vinyl-2-pyrrolidinone modified polymer microparticles as matrix for highly efficient protein digestion with low peptide residue.
    Jiang H; Yuan H; Liang Y; Xia S; Zhao Q; Wu Q; Zhang L; Liang Z; Zhang Y
    J Chromatogr A; 2012 Jul; 1246():111-6. PubMed ID: 22446077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An aptamer-based trypsin reactor for on-line protein digestion with electrospray ionization tandem mass spectrometry.
    Xiao P; Lv X; Wang S; Iqbal J; Qing H; Li Q; Deng Y
    Anal Biochem; 2013 Oct; 441(2):123-32. PubMed ID: 23831476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an on-line immobilized-enzyme reversed-phase HPLC method for protein digestion and peptide separation.
    Lim LW; Tomatsu M; Takeuchi T
    Anal Bioanal Chem; 2006 Oct; 386(3):614-20. PubMed ID: 16724223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an open-tubular trypsin reactor for on-line digestion of proteins.
    Stigter EC; de Jong GJ; van Bennekom WP
    Anal Bioanal Chem; 2007 Nov; 389(6):1967-77. PubMed ID: 17899035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of a packed bead immobilized trypsin reactor integrated into a PDMS microfluidic chip for rapid protein digestion.
    Kecskemeti A; Gaspar A
    Talanta; 2017 May; 166():275-283. PubMed ID: 28213235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of the size of magnetic particles of immobilized enzyme reactors on the digestion performance].
    Zhang J; Zhou L; Tian F; Zhang Y; Qian X
    Se Pu; 2013 Feb; 31(2):102-10. PubMed ID: 23697172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational synthesis of MoS
    Xia C; Wang H; Jiao F; Gao F; Wu Q; Shen Y; Zhang Y; Qian X
    Talanta; 2018 Mar; 179():393-400. PubMed ID: 29310250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bifunctional monolithic column for combined protein preconcentration and digestion for high throughput proteomics research.
    Zhang K; Wu S; Tang X; Kaiser NK; Bruce JE
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):223-30. PubMed ID: 17150420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient enzyme reactors containing trypsin and endoproteinase LysC immobilized on porous polymer monolith coupled to MS suitable for analysis of antibodies.
    Krenkova J; Lacher NA; Svec F
    Anal Chem; 2009 Mar; 81(5):2004-12. PubMed ID: 19186936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Preparation of a trypsin immobilized reactor on silver wire modified by atom transfer radical polymer and its application in proteome identification].
    Zhou L; Zhang J; Tian F; Zhang Y; Qian X
    Se Pu; 2013 Apr; 31(4):355-61. PubMed ID: 23898635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly synthes is of trypsin-immobilized monolithic microreactor for fast and efficient proteolysis.
    Zhong C; Yang B; Huang W; Huang H; Zhang S; Yan X; Lu Q; Chen Z; Lin Z
    J Chromatogr A; 2021 Jan; 1635():461742. PubMed ID: 33254000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.