BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37657519)

  • 1. A Multipathway Phosphopeptide Standard for Rapid Phosphoproteomics Assay Development.
    Searle BC; Chien A; Koller A; Hawke D; Herren AW; Kim Kim J; Lee KA; Leib RD; Nelson AJ; Patel P; Ren JM; Stemmer PM; Zhu Y; Neely BA; Patel B
    Mol Cell Proteomics; 2023 Oct; 22(10):100639. PubMed ID: 37657519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry.
    Parker BL; Yang G; Humphrey SJ; Chaudhuri R; Ma X; Peterman S; James DE
    Sci Signal; 2015 Jun; 8(380):rs6. PubMed ID: 26060331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Proteome and Phosphoproteome Profiling in Magnaporthe oryzae.
    Michna T; Tenzer S
    Methods Mol Biol; 2021; 2356():109-119. PubMed ID: 34236681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPECHT - single-stage phosphopeptide enrichment and stable-isotope chemical tagging: quantitative phosphoproteomics of insulin action in muscle.
    Kettenbach AN; Sano H; Keller SR; Lienhard GE; Gerber SA
    J Proteomics; 2015 Jan; 114():48-60. PubMed ID: 25463755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Rapid and Universal Workflow for Label-Free-Quantitation-Based Proteomic and Phosphoproteomic Studies in Cereals.
    He M; Wang J; Herold S; Xi L; Schulze WX
    Curr Protoc; 2022 Jun; 2(6):e425. PubMed ID: 35674286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel reaction monitoring on a Q Exactive mass spectrometer increases reproducibility of phosphopeptide detection in bacterial phosphoproteomics measurements.
    Taumer C; Griesbaum L; Kovacevic A; Soufi B; Nalpas NC; Macek B
    J Proteomics; 2018 Oct; 189():60-66. PubMed ID: 29605292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics.
    Chen Y; Hoehenwarter W
    Plant J; 2019 Apr; 98(2):370-384. PubMed ID: 30589143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoproteomic analysis identifies activated MET-axis PI3K/AKT and MAPK/ERK in lapatinib-resistant cancer cell line.
    Lee YY; Kim HP; Kang MJ; Cho BK; Han SW; Kim TY; Yi EC
    Exp Mol Med; 2013 Nov; 45(11):e64. PubMed ID: 24263233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for mass spectrometry-based phosphoproteomics using isobaric tagging.
    Liu X; Fields R; Schweppe DK; Paulo JA
    Expert Rev Proteomics; 2021 Sep; 18(9):795-807. PubMed ID: 34652972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoproteomics reveals resveratrol-dependent inhibition of Akt/mTORC1/S6K1 signaling.
    Alayev A; Doubleday PF; Berger SM; Ballif BA; Holz MK
    J Proteome Res; 2014 Dec; 13(12):5734-42. PubMed ID: 25311616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research resource: identification of novel growth hormone-regulated phosphorylation sites by quantitative phosphoproteomics.
    Ray BN; Kweon HK; Argetsinger LS; Fingar DC; Andrews PC; Carter-Su C
    Mol Endocrinol; 2012 Jun; 26(6):1056-73. PubMed ID: 22570334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thesaurus: quantifying phosphopeptide positional isomers.
    Searle BC; Lawrence RT; MacCoss MJ; Villén J
    Nat Methods; 2019 Aug; 16(8):703-706. PubMed ID: 31363206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive and Accurate Quantitation of Phosphopeptides Using TMT Isobaric Labeling Technique.
    Jiang X; Bomgarden R; Brown J; Drew DL; Robitaille AM; Viner R; Huhmer AR
    J Proteome Res; 2017 Nov; 16(11):4244-4252. PubMed ID: 29022350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-Free Phosphoproteomic Approach for Kinase Signaling Analysis.
    Wilkes E; Cutillas PR
    Methods Mol Biol; 2017; 1636():199-217. PubMed ID: 28730481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Novel Physiological Substrates of
    Nakedi KC; Calder B; Banerjee M; Giddey A; Nel AJM; Garnett S; Blackburn JM; Soares NC
    Mol Cell Proteomics; 2018 Jul; 17(7):1365-1377. PubMed ID: 29549130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-step enrichment by Ti4+-IMAC and label-free quantitation enables in-depth monitoring of phosphorylation dynamics with high reproducibility and temporal resolution.
    de Graaf EL; Giansanti P; Altelaar AF; Heck AJ
    Mol Cell Proteomics; 2014 Sep; 13(9):2426-34. PubMed ID: 24850871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating titania enrichment, iTRAQ labeling, and Orbitrap CID-HCD for global identification and quantitative analysis of phosphopeptides.
    Wu J; Warren P; Shakey Q; Sousa E; Hill A; Ryan TE; He T
    Proteomics; 2010 Jun; 10(11):2224-34. PubMed ID: 20340162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-threonine regulates G1/S phase transition of mouse embryonic stem cells via PI3K/Akt, MAPKs, and mTORC pathways.
    Ryu JM; Han HJ
    J Biol Chem; 2011 Jul; 286(27):23667-78. PubMed ID: 21550972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plug-and-play analysis of the human phosphoproteome by targeted high-resolution mass spectrometry.
    Lawrence RT; Searle BC; Llovet A; Villén J
    Nat Methods; 2016 May; 13(5):431-4. PubMed ID: 27018578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.