These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 37657519)

  • 1. A Multipathway Phosphopeptide Standard for Rapid Phosphoproteomics Assay Development.
    Searle BC; Chien A; Koller A; Hawke D; Herren AW; Kim Kim J; Lee KA; Leib RD; Nelson AJ; Patel P; Ren JM; Stemmer PM; Zhu Y; Neely BA; Patel B
    Mol Cell Proteomics; 2023 Oct; 22(10):100639. PubMed ID: 37657519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry.
    Parker BL; Yang G; Humphrey SJ; Chaudhuri R; Ma X; Peterman S; James DE
    Sci Signal; 2015 Jun; 8(380):rs6. PubMed ID: 26060331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Proteome and Phosphoproteome Profiling in Magnaporthe oryzae.
    Michna T; Tenzer S
    Methods Mol Biol; 2021; 2356():109-119. PubMed ID: 34236681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPECHT - single-stage phosphopeptide enrichment and stable-isotope chemical tagging: quantitative phosphoproteomics of insulin action in muscle.
    Kettenbach AN; Sano H; Keller SR; Lienhard GE; Gerber SA
    J Proteomics; 2015 Jan; 114():48-60. PubMed ID: 25463755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Rapid and Universal Workflow for Label-Free-Quantitation-Based Proteomic and Phosphoproteomic Studies in Cereals.
    He M; Wang J; Herold S; Xi L; Schulze WX
    Curr Protoc; 2022 Jun; 2(6):e425. PubMed ID: 35674286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel reaction monitoring on a Q Exactive mass spectrometer increases reproducibility of phosphopeptide detection in bacterial phosphoproteomics measurements.
    Taumer C; Griesbaum L; Kovacevic A; Soufi B; Nalpas NC; Macek B
    J Proteomics; 2018 Oct; 189():60-66. PubMed ID: 29605292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics.
    Chen Y; Hoehenwarter W
    Plant J; 2019 Apr; 98(2):370-384. PubMed ID: 30589143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoproteomic analysis identifies activated MET-axis PI3K/AKT and MAPK/ERK in lapatinib-resistant cancer cell line.
    Lee YY; Kim HP; Kang MJ; Cho BK; Han SW; Kim TY; Yi EC
    Exp Mol Med; 2013 Nov; 45(11):e64. PubMed ID: 24263233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for mass spectrometry-based phosphoproteomics using isobaric tagging.
    Liu X; Fields R; Schweppe DK; Paulo JA
    Expert Rev Proteomics; 2021 Sep; 18(9):795-807. PubMed ID: 34652972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoproteomics reveals resveratrol-dependent inhibition of Akt/mTORC1/S6K1 signaling.
    Alayev A; Doubleday PF; Berger SM; Ballif BA; Holz MK
    J Proteome Res; 2014 Dec; 13(12):5734-42. PubMed ID: 25311616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Rapid One-Pot Workflow for Sensitive Microscale Phosphoproteomics.
    Muneer G; Chen CS; Lee TT; Chen BY; Chen YJ
    J Proteome Res; 2024 Aug; 23(8):3294-3309. PubMed ID: 39038167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research resource: identification of novel growth hormone-regulated phosphorylation sites by quantitative phosphoproteomics.
    Ray BN; Kweon HK; Argetsinger LS; Fingar DC; Andrews PC; Carter-Su C
    Mol Endocrinol; 2012 Jun; 26(6):1056-73. PubMed ID: 22570334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thesaurus: quantifying phosphopeptide positional isomers.
    Searle BC; Lawrence RT; MacCoss MJ; Villén J
    Nat Methods; 2019 Aug; 16(8):703-706. PubMed ID: 31363206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive and Accurate Quantitation of Phosphopeptides Using TMT Isobaric Labeling Technique.
    Jiang X; Bomgarden R; Brown J; Drew DL; Robitaille AM; Viner R; Huhmer AR
    J Proteome Res; 2017 Nov; 16(11):4244-4252. PubMed ID: 29022350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-Free Phosphoproteomic Approach for Kinase Signaling Analysis.
    Wilkes E; Cutillas PR
    Methods Mol Biol; 2017; 1636():199-217. PubMed ID: 28730481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Novel Physiological Substrates of
    Nakedi KC; Calder B; Banerjee M; Giddey A; Nel AJM; Garnett S; Blackburn JM; Soares NC
    Mol Cell Proteomics; 2018 Jul; 17(7):1365-1377. PubMed ID: 29549130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-step enrichment by Ti4+-IMAC and label-free quantitation enables in-depth monitoring of phosphorylation dynamics with high reproducibility and temporal resolution.
    de Graaf EL; Giansanti P; Altelaar AF; Heck AJ
    Mol Cell Proteomics; 2014 Sep; 13(9):2426-34. PubMed ID: 24850871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating titania enrichment, iTRAQ labeling, and Orbitrap CID-HCD for global identification and quantitative analysis of phosphopeptides.
    Wu J; Warren P; Shakey Q; Sousa E; Hill A; Ryan TE; He T
    Proteomics; 2010 Jun; 10(11):2224-34. PubMed ID: 20340162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-threonine regulates G1/S phase transition of mouse embryonic stem cells via PI3K/Akt, MAPKs, and mTORC pathways.
    Ryu JM; Han HJ
    J Biol Chem; 2011 Jul; 286(27):23667-78. PubMed ID: 21550972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.