These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 37657519)
21. Plug-and-play analysis of the human phosphoproteome by targeted high-resolution mass spectrometry. Lawrence RT; Searle BC; Llovet A; Villén J Nat Methods; 2016 May; 13(5):431-4. PubMed ID: 27018578 [TBL] [Abstract][Full Text] [Related]
22. Signal Transduction Reaction Monitoring Deciphers Site-Specific PI3K-mTOR/MAPK Pathway Dynamics in Oncogene-Induced Senescence. de Graaf EL; Kaplon J; Mohammed S; Vereijken LA; Duarte DP; Redondo Gallego L; Heck AJ; Peeper DS; Altelaar AF J Proteome Res; 2015 Jul; 14(7):2906-14. PubMed ID: 26011226 [TBL] [Abstract][Full Text] [Related]
23. Quantitative Phosphoproteomic Using Titanium Dioxide Micro-Columns and Label-Free Quantitation. Barrios-Llerena ME; Le Bihan T Methods Mol Biol; 2019; 1977():35-42. PubMed ID: 30980321 [TBL] [Abstract][Full Text] [Related]
24. Proteomic analysis of phosphorylation in cancer. Ruprecht B; Lemeer S Expert Rev Proteomics; 2014 Jun; 11(3):259-67. PubMed ID: 24666026 [TBL] [Abstract][Full Text] [Related]
25. Improvement of phosphoproteome analyses using FAIMS and decision tree fragmentation. application to the insulin signaling pathway in Drosophila melanogaster S2 cells. Bridon G; Bonneil E; Muratore-Schroeder T; Caron-Lizotte O; Thibault P J Proteome Res; 2012 Feb; 11(2):927-40. PubMed ID: 22059388 [TBL] [Abstract][Full Text] [Related]
26. Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2. Humphrey SJ; Yang G; Yang P; Fazakerley DJ; Stöckli J; Yang JY; James DE Cell Metab; 2013 Jun; 17(6):1009-1020. PubMed ID: 23684622 [TBL] [Abstract][Full Text] [Related]
27. Super-SILAC mix coupled with SIM/AIMS assays for targeted verification of phosphopeptides discovered in a large-scale phosphoproteome analysis of hepatocellular carcinoma. Lin YT; Chien KY; Wu CC; Chang WY; Chu LJ; Chen MC; Yeh CT; Yu JS J Proteomics; 2017 Mar; 157():40-51. PubMed ID: 28192239 [TBL] [Abstract][Full Text] [Related]
28. Phosphoproteomic Sample Preparation for Global Phosphorylation Profiling of a Fungal Pathogen. Ball B; Krieger JR; Geddes-McAlister J Methods Mol Biol; 2022; 2456():141-151. PubMed ID: 35612740 [TBL] [Abstract][Full Text] [Related]
29. [Deciphering cellular processes responding to lethality of 17 Li Y; Liu X; Wang Y; Liu Z; Ye M; Wang H Se Pu; 2024 Apr; 42(4):333-344. PubMed ID: 38566422 [TBL] [Abstract][Full Text] [Related]
30. Estimating the Efficiency of Phosphopeptide Identification by Tandem Mass Spectrometry. Hsu CC; Xue L; Arrington JV; Wang P; Paez Paez JS; Zhou Y; Zhu JK; Tao WA J Am Soc Mass Spectrom; 2017 Jun; 28(6):1127-1135. PubMed ID: 28283928 [TBL] [Abstract][Full Text] [Related]
31. Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Shi Y; Yan H; Frost P; Gera J; Lichtenstein A Mol Cancer Ther; 2005 Oct; 4(10):1533-40. PubMed ID: 16227402 [TBL] [Abstract][Full Text] [Related]
32. Sample Preparation and Phosphopeptide Enrichment for Plant Phosphoproteomics via Label-Free Mass Spectrometry. Marzban G; Sulaj E Methods Mol Biol; 2024; 2787():293-303. PubMed ID: 38656498 [TBL] [Abstract][Full Text] [Related]
33. Interrogating the hidden phosphoproteome. Kang UB; Alexander WM; Marto JA Proteomics; 2017 Mar; 17(6):. PubMed ID: 28165663 [TBL] [Abstract][Full Text] [Related]
34. Phosphoproteomic mapping reveals distinct signaling actions and activation of muscle protein synthesis by Isthmin-1. Zhao M; Banhos Danneskiold-Samsøe N; Ulicna L; Nguyen Q; Voilquin L; Lee DE; White JP; Jiang Z; Cuthbert N; Paramasivam S; Bielczyk-Maczynska E; Van Rechem C; Svensson KJ Elife; 2022 Sep; 11():. PubMed ID: 36169399 [TBL] [Abstract][Full Text] [Related]
36. GreenPhos, a universal method for in-depth measurement of plant phosphoproteomes with high quantitative reproducibility. Duan X; Zhang Y; Huang X; Ma X; Gao H; Wang Y; Xiao Z; Huang C; Wang Z; Li B; Yang W; Wang Y Mol Plant; 2024 Jan; 17(1):199-213. PubMed ID: 38018035 [TBL] [Abstract][Full Text] [Related]
37. Examining Cellular Responses to Kinase Drug Inhibition Through Phosphoproteome Mapping of Substrates. Bucio-Noble D; Semaan C; Molloy MP Methods Mol Biol; 2019; 1888():141-152. PubMed ID: 30519945 [TBL] [Abstract][Full Text] [Related]
38. A data-independent acquisition-based global phosphoproteomics system enables deep profiling. Kitata RB; Choong WK; Tsai CF; Lin PY; Chen BS; Chang YC; Nesvizhskii AI; Sung TY; Chen YJ Nat Commun; 2021 May; 12(1):2539. PubMed ID: 33953186 [TBL] [Abstract][Full Text] [Related]
39. "Phosphoproteomic quantification based on phosphopeptide intensity or occupancy? An evaluation based on casein kinase 2 downstream effects". Rodríguez-Ulloa A; Rosales M; Ramos Y; Guirola O; González LJ; Wiśniewski JR; Perera Y; Perea SE; Besada V J Proteomics; 2024 Sep; 307():105269. PubMed ID: 39098729 [TBL] [Abstract][Full Text] [Related]